Ch 37: Special Relativity
Chapter 36, Problem 38
An ultrashort pulse has a duration of 9.00 fs and produces light at a wavelength of 556 nm. What are the momentum and momentum uncertainty of a single photon in the pulse?
Verified Solution
Video duration:
6mThis video solution was recommended by our tutors as helpful for the problem above.
617
views
Was this helpful?
Video transcript
Related Practice
Textbook Question
An unstable particle is created in the upper atmosphere from a cosmic ray and travels straight down toward the surface of the earth with a speed of 0.99540c relative to the earth. A scientist at rest on the earth’s surface measures that the particle is created at an altitude of 45.0 km. (a) As measured by the scientist, how much time does it take the particle to travel the 45.0 km to the surface of the earth? (b) Use the length-contraction formula to calculate the distance from where the particle is created to the surface of the earth as measured in the particle’s frame. (c) In the particle’s frame, how much time does it take the particle to travel from where it is created to the surface of the earth? Calculate this time both by the time dilation formula and from the distance calculated in part (b). Do the two results agree?
95
views
Textbook Question
A rocket ship flies past the earth at 91.0% of the speed of light. Inside, an astronaut who is undergoing a physical examination is having his height measured while he is lying down parallel to the direction in which the ship is moving. (a) If his height is measured to be 2.00 m by his doctor inside the ship, what height would a person watching this from the earth measure? (b) If the earth-based person had measured 2.00 m, what would the doctor in the spaceship have measured for the astronaut’s height? Is this a reasonable height?
100
views
Textbook Question
A horizontal beam of laser light of wavelength 585 nm passes through a narrow slit that has width 0.0620 mm. The intensity of the light is measured on a vertical screen that is 2.00 m from the slit. (a) What is the minimum uncertainty in the vertical component of the momentum of each photon in the beam after the photon has passed through the slit? (b) Use the result of part (a) to estimate the width of the central diffraction maximum that is observed on the screen.
1283
views
2
rank
Textbook Question
(a) An electron moves with a speed of 4.70x10^6 m/s. What is its de Broglie wavelength? (b) A proton moves with the same speed. Determine its de Broglie wavelength.
441
views
Textbook Question
For crystal diffraction experiments (discussed in Section 39.1), wavelengths on the order of 0.20 nm are often appropriate. Find the energy in electron volts for a particle with this wavelength if the particle is (a) a photon.
472
views
Textbook Question
An electron has a de Broglie wavelength of 2.80x10^-10 m. Determine (a) the magnitude of its momentum and (b) its kinetic energy (in joules and in electron volts).
636
views