Ch 37: Special Relativity
Chapter 36, Problem 39
A beam of alpha particles is incident on a target of lead. A particular alpha particle comes in 'head-on' to a particular lead nucleus and stops 6.50x10^-14 m away from the center of the nucleus. (This point is well outside the nucleus.) Assume that the lead nucleus, which has 82 protons, remains at rest. The mass of the alpha particle is 6.64x10^-27 kg. (a) Calculate the electrostatic potential energy at the instant that the alpha particle stops. Express your result in joules and in MeV. (b) What initial kinetic energy (in joules and in MeV) did the alpha particle have? (c) What was the initial speed of the alpha particle?
Verified Solution
Video duration:
6mThis video solution was recommended by our tutors as helpful for the problem above.
929
views
Was this helpful?
Video transcript
Related Practice
Textbook Question
Calculate the de Broglie wavelength of a 5.00-g bullet that is moving at 340 m/s. Will the bullet exhibit wavelike properties?
504
views
Textbook Question
Through what potential difference must electrons be accelerated if they are to have (a) the same wavelength as an x ray of wavelength 0.220 nm and (b) the same energy as the x ray in part (a)?
692
views
Textbook Question
A 4.78-MeV alpha particle from a 226Ra decay makes a head-on collision with a uranium nucleus. A uranium nucleus has 92 protons. (a) What is the distance of closest approach of the alpha particle to the center of the nucleus? Assume that the uranium nucleus remains at rest and that the distance of closest approach is much greater than the radius of the uranium nucleus. (b) What is the force on the alpha particle at the instant when it is at the distance of closest approach?
851
views
2
rank
Textbook Question
The energy-level scheme for the hypothetical oneelectron element Searsium is shown in Fig. E39.25 . The potential energy is taken to be zero for an electron at an infinite distance from the nucleus. (b) An 18-eV photon is absorbed by a Searsium atom in its ground level. As the atom returns to its ground level, what possible energies can the emitted photons have? Assume that there can be transitions between all pairs of levels.
465
views
Textbook Question
In a set of experiments on a hypothetical oneelectron atom, you measure the wavelengths of the photons emitted from transitions ending in the ground level (n = 1), as shown in the energy-level diagram in Fig. E39.27 . You also observe that it takes 17.50 eV to ionize this atom. (a) What is the energy of the atom in each of the levels (n = 1, n = 2, etc.) shown in the figure?
485
views
Textbook Question
A hydrogen atom is in a state with energy -1.51 eV. In the Bohr model, what is the angular momentum of the electron in the atom, with respect to an axis at the nucleus?
428
views