Ch 31: Alternating Current
Chapter 31, Problem 31
You have a special light bulb with a very delicate wire filament. The wire will break if the current in it ever exceeds 1.50 A, even for an instant. What is the largest root-mean-square current you can run through this bulb?
Verified Solution
Video duration:
2mThis video solution was recommended by our tutors as helpful for the problem above.
220
views
Was this helpful?
Video transcript
Related Practice
Textbook Question
An L-R-C series circuit with L = 0.120 H, R = 240 Ω, and C = 7.30 μF carries an rms current of 0.450 A with a frequency of 400 Hz. (a) What are the phase angle and power factor for this circuit?
207
views
Textbook Question
An L-R-C series circuit is connected to a 120-Hz ac source that has V_rms = 80.0 V. The circuit has a resistance of 75.0 Ω and an impedance at this frequency of 105 Ω. What average power is delivered to the circuit by the source?
312
views
Textbook Question
A series ac circuit contains a 250-Ω resistor, a 15-mH inductor, a 3.5-μF capacitor, and an ac power source of voltage amplitude 45 V operating at an angular frequency of 360 rad/s.(a) What is the power factor of this circuit?
214
views
Textbook Question
A sinusoidal current i = I cosωt has an rms value I_rms = 2.10 A. (a) What is the current amplitude?
258
views
Textbook Question
Off to Europe! You plan to take your hair dryer to Europe, where the electrical outlets put out 240 V instead of the 120 V seen in the United States. The dryer puts out 1600 W at 120 V. (a) What could you do to operate your dryer via the 240-V line in Europe?
216
views
Textbook Question
Off to Europe! You plan to take your hair dryer to Europe, where the electrical outlets put out 240 V instead of the 120 V seen in the United States. The dryer puts out 1600 W at 120 V. (b) What current will your dryer draw from a European outlet? (c) What resistance will your dryer appear to have when operated at 240 V?
214
views