Ch 22: Gauss' Law
Chapter 22, Problem 9
A charged paint is spread in a very thin uniform layer over the surface of a plastic sphere of diameter 12.0 cm, giving it a charge of −49.0 μ C. Find the electric field (b) just outside the paint layer;
Verified Solution
Video duration:
2mThis video solution was recommended by our tutors as helpful for the problem above.
923
views
Was this helpful?
Video transcript
Related Practice
Textbook Question
A charged paint is spread in a very thin uniform layer over the surface of a plastic sphere of diameter 12.0 cm, giving it a charge of −49.0 μ C. Find the electric field (a) just inside the paint layer;
1302
views
Textbook Question
The nuclei of large atoms, such as uranium, with 92 protons, can be modeled as spherically symmetric spheres of charge. The radius of the uranium nucleus is approximately 7.4×10−15 m. (a) What is the electric field this nucleus produces just outside its surface?
400
views
1
rank
Textbook Question
The nuclei of large atoms, such as uranium, with 92 protons, can be modeled as spherically symmetric spheres of charge. The radius of the uranium nucleus is approximately 7.4×10−15 m. (c) The electrons can be modeled as forming a uniform shell of negative charge. What net electric field do they produce at the location of the nucleus?
1558
views
Textbook Question
Some planetary scientists have suggested that the planet Mars has an electric field somewhat similar to that of the earth, producing a net electric flux of −3.63×1016 N·m2/C at the planet's surface. Calculate: (a) the total electric charge on the planet;
338
views
2
rank