Ch 21: Electric Charge and Electric Field
Chapter 21, Problem 21
Two small plastic spheres are given positive electric charges. When they are 15.0 cm apart, the repulsive force between them has magnitude 0.220 N. What is the charge on each sphere (a) if the two charges are equal and
Verified Solution
Video duration:
2mThis video solution was recommended by our tutors as helpful for the problem above.
633
views
Was this helpful?
Video transcript
Related Practice
Textbook Question
Two small aluminum spheres, each having mass 0.0250 kg, are separated by 80.0 cm. (b) How many electrons would have to be removed from one sphere and added to the other to cause an attractive force between the spheres of magnitude 1.00 * 10^4 N (roughly 1 ton)? Assume that the spheres may be treated as point charges.
1687
views
1
rank
Textbook Question
Two small aluminum spheres, each having mass 0.0250 kg, are separated by 80.0 cm. (c) What fraction of all the electrons in each sphere does this represent?
712
views
Textbook Question
Two small spheres spaced 20.0 cm apart have equal charge. How many excess electrons must be present on each sphere if the magnitude of the force of repulsion between them is 3.33 * 10^-21 N?
4051
views
5
rank
Textbook Question
Two small plastic spheres are given positive electric charges. When they are 15.0 cm apart, the repulsive force between them has magnitude 0.220 N. What is the charge on each sphere (b) if one sphere has four times the charge of the other?
2312
views
Textbook Question
Point charges q1 = -4.5 nC and q2 = +4.5 nC are separated by 3.1 mm, forming an electric dipole. (b) The charges are in a uniform electric field whose direction makes an angle of 36.9° with the line connecting the charges. What is the magnitude of this field if the torque exerted on the dipole has magnitude 7.2 * 10^-9 N•m?
1029
views
2
rank
Textbook Question
Torque on a Dipole. An electric dipole with dipole moment p is in a uniform external electric field E. (a) Find the orientations of the dipole for which the torque on the dipole is zero.
868
views