Ch 21: Electric Charge and Electric Field
Chapter 21, Problem 21
Torque on a Dipole. An electric dipole with dipole moment p is in a uniform external electric field E. (c) Show that for the stable orientation in part (b), the dipole's own electric field tends to oppose the external field.
Verified Solution
Video duration:
4mThis video solution was recommended by our tutors as helpful for the problem above.
554
views
Was this helpful?
Video transcript
Related Practice
Textbook Question
Three point charges are arranged on a line. Charge q3 = +5.00 nC and is at the origin. Charge q2 = -3.00 nC and is at x = +4.00 cm. Charge q1 is at x = +2.00 cm. What is q1 (magnitude and sign) if the net force on q3 is zero?
1740
views
Textbook Question
Three point charges are arranged along the x-axis. Charge q1 = +3.00 mC is at the origin, and charge q2 = -5.00 mC is at x = 0.200 m. Charge q3 = -8.00 mC. Where is q3 located if the net force on q1 is 7.00 N in the -x-direction?
1613
views
Textbook Question
Torque on a Dipole. An electric dipole with dipole moment p is in a uniform external electric field E. (b) Which of the orientations in part (a) is stable, and which is unstable? (Hint: Consider a small rotation away from the equilibrium position and see what happens.)
530
views
Textbook Question
Two small aluminum spheres, each having mass 0.0250 kg, are separated by 80.0 cm. (a) How many electrons does each sphere contain? (The atomic mass of aluminum is 26.982 g/mol, and its atomic number is 13.)
760
views
Textbook Question
A very long, straight wire has charge per unit length 3.20 * 10^-10 C/m. At what distance from the wire is the electricfield magnitude equal to 2.50 N/C?
1948
views
Textbook Question
CP A proton is traveling horizontally to the right at 4.50 * 10^6 m/s. (a) Find the magnitude and direction of the weakest electric field that can bring the proton uniformly to rest over a distance of 3.20 cm.
1806
views
7
rank