Ch 18: Thermal Properties of Matter
Chapter 18, Problem 18
Helium gas with a volume of 3.20 L, under a pressure of 0.180 atm and at 41.0°C, is warmed until both pressure and volume are doubled. (b) How many grams of helium are there? The molar mass of helium is 4.00 g/mol.
Verified Solution
Video duration:
5mThis video solution was recommended by our tutors as helpful for the problem above.
596
views
Was this helpful?
Video transcript
Related Practice
Textbook Question
Solid water (ice) is slowly warmed from a very low temperature. (a) What minimum external pressure p1 must be applied to the solid if a melting phase transition is to be observed? Describe the sequence of phase transitions that occur if the applied pressure p is such that p < p1.
484
views
Textbook Question
A 20.0-L tank contains 4.86 * 10^-4 kg of helium at 18.0°C. The molar mass of helium is 4.00 g/mol. (a) How many moles of helium are in the tank?
435
views
Textbook Question
A 20.0-L tank contains 4.86 * 10^-4 kg of helium at 18.0°C. The molar mass of helium is 4.00 g/mol. (b) What is the pressure in the tank, in pascals and in atmospheres?
805
views
Textbook Question
You have several identical balloons. You experimentally determine that a balloon will break if its volume exceeds 0.900 L. The pressure of the gas inside the balloon equals air pressure (1.00 atm). (a) If the air inside the balloon is at a constant 22.0°C and behaves as an ideal gas, what mass of air can you blow into one of the balloons before it bursts?
518
views
Textbook Question
A large cylindrical tank contains 0.750 m^3 of nitrogen gas at 27°C and 7.50 * 10^3 Pa (absolute pressure). The tank has a tight-fitting piston that allows the volume to be changed. What will be the pressure if the volume is decreased to 0.410 m^3 and the temperature is increased to 157°C?
341
views
Textbook Question
Oxygen (O2) has a molar mass of 32.0 g>mol. What is (e) Suppose an oxygen molecule traveling at this speed bounces back and forth between opposite sides of a cubical vessel 0.10 m on a side. What is the average force the molecule exerts on one of the walls of the container? (Assume that the molecule's velocity is perpendicular to the two sides that it strikes.)
655
views