Ch 23: Electric Potential
Chapter 23, Problem 23
Two stationary point charges +3.00 nC and +2.00 nC are separated by a distance of 50.0 cm. An electron is released from rest at a point midway between the two charges and moves along the line connecting the two charges. What is the speed of the electron when it is 10.0 cm from the +3.00-nC charge?
Verified Solution
Video duration:
13mThis video solution was recommended by our tutors as helpful for the problem above.
3069
views
1
comments
Was this helpful?
Video transcript
Related Practice
Textbook Question
An infinitely long line of charge has linear charge density 5.00x10^-12 C/m. A proton (mass 1.67x10^-27 kg, charge +1.60x10^-19 C) is 18.0 cm from the line and moving directly toward the line at 3.50x10^3 m/s. (a) Calculate the proton's initial kinetic energy.
1328
views
Textbook Question
Two large, parallel conducting plates carrying opposite charges of equal magnitude are separated by 2.20 cm. The surface charge density for each plate has magnitude 47.0 nC/m^2. (c) If the separation between the plates is doubled while the surface charge density is kept constant at the given value, what happens to the magnitude of the electric field and to the potential difference?
1006
views
Textbook Question
(a) How much excess charge must be placed on a copper sphere 25.0 cm in diameter so that the potential of its center, relative to infinity, is 3.75 kV? (b) What is the potential of the sphere's surface relative to infinity?
793
views
Textbook Question
A thin spherical shell with radius R_1 = 3.00 cm is concentric with a larger thin spherical shell with radius R_2 = 5.00 cm. Both shells are made of insulating material. The smaller shell has charge q_1 = +6.00 nC distributed uniformly over its surface, and the larger shell has charge q_2 = -9.00 nC distributed uniformly over its surface. Take the electric potential to be zero at an infinite distance from both shells. (a) What is the electric potential due to the two shells at the following distance from their common center: (i) r=0; (ii) r=4.00 cm; (iii) r=6.00 cm?
1498
views
1
comments
Textbook Question
(a) How much work would it take to push two protons very slowly from a separation of 2.00x10^-10 m (a typical atomic distance) to 3.00x10^-15 m (a typical nuclear distance)? (b) If the protons are both released from rest at the closer distance in part (a), how fast are they moving when they reach their original separation?
2182
views
Textbook Question
A small metal sphere, carrying a net charge of q_1 = -2.80 μC, is held in a stationary position by insulating supports. A second small metal sphere, with a net charge of q_2 = -7.80 μC and mass 1.50 g, is projected toward q_1. When the two spheres are 0.800 m apart, q_2, is moving toward q_1 with speed 22.0 m/s (Fig. E23.5). Assume that the two spheres can be treated as point charges. You can ignore the force of gravity. (a) What is the speed of q_2 when the spheres are 0.400 m apart?
1155
views
1
rank