Ch 23: Electric Potential
Chapter 23, Problem 23
Two point charges q_1 = +2.40 nC and q_2 = -6.50 nC are 0.100 m apart. Point A is midway between them; point B is 0.080 m from q_1 and 0.060 m from q_2 (Fig. E23.19). Take the electric potential to be zero at infinity. Find (a) the potential at point A.
Verified Solution
Video duration:
5mThis video solution was recommended by our tutors as helpful for the problem above.
1200
views
1
rank
Was this helpful?
Video transcript
Related Practice
Textbook Question
Point charges q_1 = +2.00 μC and q_2 = -2.00 μC are placed at adjacent corners of a square for which the length of each side is 3.00 cm. Point a is at the center of the square, and point bis at the empty corner closest to q_2. Take the electric potential to be zero at a distance far from both charges. (a) What is the electric potential at point a due to q_1 and q_2?
977
views
Textbook Question
Two point charges of equal magnitude Q are held a distance d apart. Consider only points on the line passing through both charges. (a) If the two charges have the same sign, find the location of all points (if there are any) at which (i) the potential (relative to infinity) is zero (is the electric field zero at these points?), and (ii) the electric field is zero (is the potential zero at these points?).
758
views
1
rank
Textbook Question
Two point charges of equal magnitude Q are held a distance d apart. Consider only points on the line passing through both charges. (a) If the two charges have the same sign, find the location of all points (if there are any) at which (i) the potential (relative to infinity) is zero (is the electric field zero at these points?), and (ii) the electric field is zero (is the potential zero at these points?).
1484
views
3
rank
Textbook Question
Two point charges q_1 = +2.40 nC and q_2 = -6.50 nC are 0.100 m apart. Point A is midway between them; point B is 0.080 m from q_1 and 0.060 m from q_2 (Fig. E23.19). Take the electric potential to be zero at infinity. Find (b) the potential at point B.
443
views
Textbook Question
At a certain distance from a point charge, the poten-tial and electric-field magnitude due to that charge are 4.98 V and 16.2 V/m, respectively. (Take V = 0 at infinity.) (a) What is the distance to the point charge?
1263
views
Textbook Question
An electron is to be accelerated from 3.00x10^6 m/s to 8.00x10^6 m/s. (a) Through what potential difference must the electron pass to accomplish this?
832
views
1
rank