Skip to main content
Ch 23: Electric Potential
Chapter 23, Problem 23

CALC. A metal sphere with radius r_a is supported on an insulating stand at the center of a hollow, metal, spherical shell with radius r_b. There is charge +q on the inner sphere and charge -q on the outer spherical shell. (a) Calculate the potential V(r) for (i) r < r_a; (ii) r_a < r < r_b; (iii) r > r_b. (Hint: The net potential is the sum of the potentials due to the individual spheres.) Take V to be zero when r is infinite. (b) Show that the potential of the inner sphere with respect to the outer is V_ab=q/(4πϵ_0 ) (1/r_a -1/r_b). (c) Use E_r=-∂V/∂r=(-∂/∂r) (1/(4πϵ_0 ) q/r)=[1/(4πϵ_0 )](q/r^2) and the result from part (a) to show that the electric field at any point between the spheres has magnitude E(r)=[V_ab/(1/r_a -1/r_b )](1/r^2) (d) Use E_r = [1/(4πϵ_0 )](q/r^2) and the result from part (a) to find the electric field at a point outside the larger sphere at a distance r from the center, where r > r_b. (e) Suppose the charge on the outer sphere is not -q but a negative charge of different magnitude, say -Q. Show that the answers for parts (b) and (c) are the same as before but the answer for part (d) is different.

Verified step by step guidance
1
Identify the regions of interest based on the radius r: (i) r < r_a, (ii) r_a < r < r_b, (iii) r > r_b. Use the principle of superposition to calculate the potential V(r) in each region by summing the contributions from the inner and outer spheres.
For r < r_a, only the potential due to the inner sphere affects this region as the outer shell's influence is nullified within it. Use the formula for the potential due to a point charge, V = kq/r, where k = 1/(4πϵ_0).
For r_a < r < r_b, the potential is constant throughout this region because the electric field inside a conductor is zero, which implies that the potential is the same at any point inside the shell. Calculate this constant potential using the potential at r_a from the inner sphere and considering the potential contribution from the outer shell to be zero at this point.
For r > r_b, the potential is due to both the inner sphere and the outer shell. Since the shell has a charge of -q, use the principle of superposition and the formula for the potential due to a point charge to find the net potential.
To find the potential difference V_ab between the inner and outer spheres, use the formula V_ab = q/(4πϵ_0) (1/r_a - 1/r_b). This represents the work done per unit charge in moving a test charge from the outer sphere to the inner sphere without any acceleration.

Verified Solution

Video duration:
16m
This video solution was recommended by our tutors as helpful for the problem above.
Was this helpful?

Key Concepts

Here are the essential concepts you must grasp in order to answer the question correctly.

Electric Potential

Electric potential, denoted as V, is the amount of electric potential energy per unit charge at a point in an electric field. It is a scalar quantity that indicates the work done to move a charge from a reference point (usually at infinity) to a specific point in the field. The potential due to a point charge is given by V = k * q / r, where k is Coulomb's constant, q is the charge, and r is the distance from the charge.
Recommended video:
Guided course
07:33
Electric Potential

Gauss's Law

Gauss's Law relates the electric flux through a closed surface to the charge enclosed by that surface. Mathematically, it states that the total electric flux through a closed surface is equal to the enclosed charge divided by the permittivity of free space (ϵ_0). This law is particularly useful for calculating electric fields in symmetric charge distributions, such as spherical shells and point charges.
Recommended video:

Electric Field

The electric field (E) is a vector field that represents the force experienced by a unit positive charge placed in the field. It is defined as the negative gradient of the electric potential, E = -∇V. For a point charge, the electric field decreases with the square of the distance from the charge, following the formula E = k * q / r^2. Understanding the relationship between electric field and potential is crucial for solving problems involving charge distributions.
Recommended video:
Guided course
03:16
Intro to Electric Fields
Related Practice
Textbook Question
CALC. A metal sphere with radius r_a is supported on an insulating stand at the center of a hollow, metal, spherical shell with radius r_b. There is charge +q on the inner sphere and charge -q on the outer spherical shell. (a) Calculate the potential V(r) for (i) r < r_a; (ii) r_a < r < r_b; (iii) r > r_b. (Hint: The net potential is the sum of the potentials due to the individual spheres.) Take V to be zero when r is infinite. (b) Show that the potential of the inner sphere with respect to the outer is V_ab=q/(4πϵ_0 ) (1/r_a -1/r_b). (c) Use E_r=-∂V/∂r=(-∂/∂r) (1/(4πϵ_0 ) q/r)=[1/(4πϵ_0 )](q/r^2) and the result from part (a) to show that the electric field at any point between the spheres has magnitude E(r)=[V_ab/(1/r_a -1/r_b )](1/r^2) (d) Use E_r = [1/(4πϵ_0 )](q/r^2) and the result from part (a) to find the electric field at a point outside the larger sphere at a distance r from the center, where r > r_b. (e) Suppose the charge on the outer sphere is not -q but a negative charge of different magnitude, say -Q. Show that the answers for parts (b) and (c) are the same as before but the answer for part (d) is different.
409
views
1
rank
Textbook Question
CALC. A metal sphere with radius r_a is supported on an insulating stand at the center of a hollow, metal, spherical shell with radius r_b. There is charge +q on the inner sphere and charge -q on the outer spherical shell. (a) Calculate the potential V(r) for (i) r < r_a; (ii) r_a < r < r_b; (iii) r > r_b. (Hint: The net potential is the sum of the potentials due to the individual spheres.) Take V to be zero when r is infinite. (b) Show that the potential of the inner sphere with respect to the outer is V_ab=q/(4πϵ_0 ) (1/r_a -1/r_b). (c) Use E_r=-∂V/∂r=(-∂/∂r) (1/(4πϵ_0 ) q/r)=[1/(4πϵ_0 )](q/r^2) and the result from part (a) to show that the electric field at any point between the spheres has magnitude E(r)=[V_ab/(1/r_a -1/r_b )](1/r^2) (d) Use E_r = [1/(4πϵ_0 )](q/r^2) and the result from part (a) to find the electric field at a point outside the larger sphere at a distance r from the center, where r > r_b. (e) Suppose the charge on the outer sphere is not -q but a negative charge of different magnitude, say -Q. Show that the answers for parts (b) and (c) are the same as before but the answer for part (d) is different.
370
views
Textbook Question
CALC. A metal sphere with radius r_a is supported on an insulating stand at the center of a hollow, metal, spherical shell with radius r_b. There is charge +q on the inner sphere and charge -q on the outer spherical shell. (a) Calculate the potential V(r) for (i) r < r_a; (ii) r_a < r < r_b; (iii) r > r_b. (Hint: The net potential is the sum of the potentials due to the individual spheres.) Take V to be zero when r is infinite. (b) Show that the potential of the inner sphere with respect to the outer is V_ab=q/(4πϵ_0 ) (1/r_a -1/r_b). (c) Use E_r=-∂V/∂r=(-∂/∂r) (1/(4πϵ_0 ) q/r)=[1/(4πϵ_0 )](q/r^2) and the result from part (a) to show that the electric field at any point between the spheres has magnitude E(r)=[V_ab/(1/r_a -1/r_b )](1/r^2) (d) Use E_r = [1/(4πϵ_0 )](q/r^2) and the result from part (a) to find the electric field at a point outside the larger sphere at a distance r from the center, where r > r_b. (e) Suppose the charge on the outer sphere is not -q but a negative charge of different magnitude, say -Q. Show that the answers for parts (b) and (c) are the same as before but the answer for part (d) is different.
1507
views
Textbook Question
A very large plastic sheet carries a uniform charge density of -6.00 nC/m^2 on one face. (a) As you move away from the sheet along a line perpendicular to it, does the potential increase or decrease? How do you know, without doing any calculations? Does your answer depend on where you choose the reference point for potential?
791
views
Textbook Question
A point charge q_1=+2.40 μC is held stationary at the origin. A second point charge q_2=-4.30 μC moves from the point x=0.150 m, y=0 to the point x=0.250 m, y=0.250 m. How much work is done by the electric force on q_2?
1612
views
1
rank
Textbook Question
A particle with charge +4.20 nC is in a uniform electric field E directed to the left. The charge is released from rest and moves to the left; after it has moved 6.00 cm, its kinetic energy is +2.20x10^-6 J. What is (a) the work done by the electric force?
972
views