Ch 15: Mechanical Waves
Chapter 15, Problem 15
A 1.50-m-long rope is stretched between two supports with a tension that makes the speed of transverse waves 62.0 m/s.What are the wavelength and frequency of (a) the fundamental?
Verified Solution
Video duration:
2mThis video solution was recommended by our tutors as helpful for the problem above.
810
views
Was this helpful?
Video transcript
Related Practice
Textbook Question
A fellow student with a mathematical bent tells you that the wave function of a traveling wave on a thin rope is y(x, t)=2.30mm cos[(16.98 rad/m^)x+(742 rad/s)t]. Being more practical, you measure the rope to have a length of 1.35 m and a mass of 0.00338 kg. You are then asked to determine the following: (d) wave speed; (e) direction the wave is traveling;
351
views
Textbook Question
A horizontal string tied at both ends is vibrating in its fundamental mode. The traveling waves have speed v, frequency f, amplitude A, and wavelength λ. (b) What is the amplitude of the motion at the points located at (i) x = λ/2, (ii) x = λ/4, and (iii) x = λ/8, from the left-hand end of the string?
570
views
Textbook Question
A horizontal string tied at both ends is vibrating in its fundamental mode. The traveling waves have speed v, frequency f, amplitude A, and wavelength λ. (c) How much time does it take the string to go from its largest upward displacement to its largest downward displacement at the points located at (i) x = λ/2, (ii) x = λ/4, and (iii) x = λ/8, from the left-hand end of the string.
554
views
Textbook Question
A 1.50-m-long rope is stretched between two supports with a tension that makes the speed of transverse waves 62.0 m/s.What are the wavelength and frequency of (b) the second overtone?
548
views
Textbook Question
A 1.50-m-long rope is stretched between two supports with a tension that makes the speed of transverse waves 62.0 m/s.What are the wavelength and frequency of (c) the fourth harmonic?
444
views
Textbook Question
A wire with mass 40.0 g is stretched so that its ends are tied down at points 80.0 cm apart. The wire vibrates in its fundamental mode with frequency 60.0 Hz and with an amplitude at the antinodes of 0.300 cm. (a) What is the speed of propagation of transverse waves in the wire?
597
views