Ch 14: Periodic Motion
Chapter 14, Problem 14
The wings of the blue-throated hummingbird (Lampornis clemenciae), which inhabits Mexico and the southwestern United States, beat at a rate of up to 900 times per minute. Calculate (a) the period of vibration of this bird's wings, (b) the frequency of the wings' vibration, and (c) the angular frequency of the bird's wing beats.
Verified Solution
Video duration:
3mThis video solution was recommended by our tutors as helpful for the problem above.
500
views
Was this helpful?
Video transcript
Related Practice
Textbook Question
The displacement of an oscillating object as a function of time is shown in Fig. E14.4 . What is (a) the frequency? (b) the amplitude? (c) the period? (d) the angular frequency of this motion?
1284
views
Textbook Question
The displacement of an oscillating object as a function of time is shown in Fig. E14.4 . What is (a) the frequency? (b) the amplitude? (c) the period? (d) the angular frequency of this motion?
1510
views
Textbook Question
A machine part is undergoing SHM with a frequency of 4.00 Hz and amplitude 1.80 cm. How long does it take the part to go from x = 0 to x = -1.80 cm ?
1438
views
Textbook Question
A 2.40-kg ball is attached to an unknown spring and allowed to oscillate. Figure E14.7 shows a graph of the ball's position x as a function of time t. What are the oscillation's (a) period, (b) frequency, (c) angular frequency, and (d) amplitude? (e) What is the force constant of the spring?
1130
views
Textbook Question
A 2.40-kg ball is attached to an unknown spring and allowed to oscillate. Figure E14.7 shows a graph of the ball's position x as a function of time t. What are the oscillation's (a) period, (b) frequency, (c) angular frequency, and (d) amplitude? (e) What is the force constant of the spring?
729
views
Textbook Question
In a physics lab, you attach a 0.200-kg air-track glider to the end of an ideal spring of negligible mass and start it oscillating. The elapsed time from when the glider first moves through the equilibrium point to the second time it moves through that point is 2.60 s. Find the spring's force constant.
1683
views