A solid ball is released from rest and slides down a hillside that slopes downward at 65.0° from the horizontal. (c) In part (a), why did we use the coefficient of static friction and not the coefficient of kinetic friction?


Verified Solution

Key Concepts
Static Friction vs. Kinetic Friction
Coefficient of Friction
Forces on an Inclined Plane
A machine part has the shape of a solid uniform sphere of mass 225 g and diameter 3.00 cm. It is spinning about a frictionless axle through its center, but at one point on its equator it is scraping against metal, resulting in a friction force of 0.0200 N at that point. (b) How long will it take to decrease its rotational speed by 22.5 rad/s?
A playground merry-go-round has radius 2.40 m and moment of inertia 2100 kg•m^2 about a vertical axle through its center, and it turns with negligible friction. (a) A child applies an 18.0-N force tangentially to the edge of the merry-go-round for 15.0 s. If the merry-go-round is initially at rest, what is its angular speed after this 15.0-s interval?
CP A small block on a frictionless, horizontal surface has a mass of 0.0250 kg. It is attached to a massless cord passing through a hole in the surface (Fig. E10.40). The block is originally revolving at a distance of 0.300 m from the hole with an angular speed of 2.85 rad/s. The cord is then pulled from below, shortening the radius of the circle in which the block revolves to 0.150 m. Model the block as a particle. (a) Is the angular momentum of the block conserved? Why or why not?
CP A small block on a frictionless, horizontal surface has a mass of 0.0250 kg. It is attached to a massless cord passing through a hole in the surface (Fig. E10.40). The block is originally revolving at a distance of 0.300 m from the hole with an angular speed of 2.85 rad/s. The cord is then pulled from below, shortening the radius of the circle in which the block revolves to 0.150 m. Model the block as a particle. (b) What is the new angular speed?