Ch 10: Dynamics of Rotational Motion
Chapter 10, Problem 10
(a) Calculate the magnitude of the angular momentum of the earth in a circular orbit around the sun. Is it reasonable to model it as a particle? Consult Appendix E and the astronomical data in Appendix F
Verified Solution
Video duration:
4mThis video solution was recommended by our tutors as helpful for the problem above.
1059
views
Was this helpful?
Video transcript
Related Practice
Textbook Question
A uniform, 4.5-kg, square, solid wooden gate 1.5 m on each side hangs vertically from a frictionless pivot at the center of its upper edge. A 1.1-kg raven flying horizontally at 5.0 m/s flies into this door at its center and bounces back at 2.0 m/s in the opposite direction. (b) During the collision, why is the angular momentum conserved but not the linear momentum?
525
views
Textbook Question
A woman with mass 50 kg is standing on the rim of a large disk that is rotating at 0.80 rev/s about an axis through its center. The disk has mass 110 kg and radius 4.0 m. Calculate the magnitude of the total angular momentum of the woman–disk system. (Assume that you can treat the woman as a point.)
1974
views
Textbook Question
CALC A hollow, thin-walled sphere of mass 12.0 kg and diameter 48.0 cm is rotating about an axle through its center. The angle (in radians) through which it turns as a function of time (in seconds) is given by θ(t) = At^2 + Bt^4, where A has numerical value 1.50 and B has numerical value 1.10. (a) What are the units of the constants A and B?
1309
views
Textbook Question
(a) Calculate the magnitude of the angular momentum of the earth in a circular orbit around the sun. Is it reasonable to model it as a particle? Consult Appendix E and the astronomical data in Appendix F
413
views
Textbook Question
A Gyroscope on the Moon. A certain gyroscope precesses at a rate of 0.50 rad/s when used on earth. If it were taken to a lunar base, where the acceleration due to gravity is 0.165g, what would be its precession rate?
508
views
Textbook Question
The flywheel of an engine has moment of inertia 1.60 kg/m^2 about its rotation axis. What constant torque is required to bring it up to an angular speed of 400 rev/min in 8.00 s,
starting from rest?
717
views
1
rank