Skip to main content
Ch 05: Applying Newton's Laws

Chapter 5, Problem 5

(b) If the skydiver's daughter, whose mass is 45 kg, is falling through the air and has the same D (0.25 kg/m) as her father, what is the daughter's terminal speed?

Verified Solution
Video duration:
58s
This video solution was recommended by our tutors as helpful for the problem above.
385
views
Was this helpful?

Video transcript

Welcome back everybody. We have a skydiver who has achieved terminal velocity and we are told that terminal velocity is calculated by this equation right here, objects mass or the skydivers mass times the acceleration due to gravity Divided by the drag constant. And we are told that the Skydiver is dropping feet first and our drag constant for that position is 0.15. Let's go ahead and plug in all of these values. We have the square root of mass, which is 62 kg times the acceleration of gravity 9.8, all divided by his drag constant for that position, giving him a terminal velocity of 63. m/s or responding to answer choice B. Thank you guys so much for watching. Hope. This video helped. We will see you all in the next one.
Related Practice
Textbook Question
A pickup truck is carrying a toolbox, but the rear gate of the truck is missing. The toolbox will slide out if it is set moving. The coefficients of kinetic friction and static friction between the box and the level bed of the truck are 0.355 and 0.650, respectively. Starting from rest, what is the shortest time this truck could accelerate uniformly to 30.0 m/s without causing the box to slide? Draw a free-body diagram of the toolbox.
1433
views
2
rank
Textbook Question
The 'Giant Swing' at a county fair consists of a vertical central shaft with a number of horizontal arms attached at its upper end. Each arm supports a seat suspended from a cable 5.00 m long, and the upper end of the cable is fastened to the arm at a point 3.00 m from the central shaft (Fig. E5.50). (a) Find the time of one revolution of the swing if the cable supporting a seat makes an angle of 30.0° with the vertical.

7136
views
4
comments
Textbook Question
A man pushes on a piano with mass 180 kg; it slides at constant velocity down a ramp that is inclined at 19.0° above the horizontal floor. Neglect any friction acting on the piano. Calculate the magnitude of the force applied by the man if he pushes (a) parallel to the incline
575
views
Textbook Question
A 1125-kg car and a 2250-kg pickup truck approach a curve on a highway that has a radius of 225 m. (a) At what angle should the highway engineer bank this curve so that vehicles traveling at 65.0 mi/h can safely round it regardless of the condition of their tires? Should the heavy truck go slower than the lighter car?
2301
views
Textbook Question
A 52-kg ice skater spins about a vertical axis through her body with her arms horizontally outstretched; she makes 2.0 turns each second. The distance from one hand to the other is 1.50 m. Biometric measurements indicate that each hand typically makes up about 1.25% of body weight. (b) What horizontal force must her wrist exert on her hand?
1146
views
1
comments
Textbook Question
A small remote-controlled car with mass 1.60 kg moves at a constant speed of υ = 12.0 m/s in a track formed by a vertical circle inside a hollow metal cylinder that has a radius of 5.00 m (Fig. E5.45). What is the magnitude of the normal force exerted on the car by the walls of the cylinder at (a) point A (bottom of the track)

729
views