Ch 04: Newton's Laws of Motion
Chapter 4, Problem 4
A dockworker applies a constant horizontal force of 80.0 N to a block of ice on a smooth horizontal floor. The frictional force is negligible. The block starts from rest and moves 11.0 m in 5.00 s. (a) What is the mass of the block of ice?
Verified Solution
Video duration:
5mThis video solution was recommended by our tutors as helpful for the problem above.
1048
views
Was this helpful?
Video transcript
Related Practice
Textbook Question
To extricate an SUV stuck in the mud, workmen use three horizontal ropes, producing the force vectors shown in Fig. E4.2. (b) Use the components to find the magnitude and direction of the resultant of the three pulls.
2978
views
4
rank
Textbook Question
Due to a jaw injury, a patient must wear a strap (Fig. E4.3) that produces a net upward force of 5.00 N on his chin. The tension is the same throughout the strap. To what tension must the strap be adjusted to provide the necessary upward force?
8914
views
13
rank
1
comments
Textbook Question
A box rests on a frozen pond, which serves as a frictionless horizontal surface. If a fisherman applies a horizontal force with magnitude 48.0 N to the box and produces an acceleration of magnitude 2.20 m/s2, what is the mass of the box?
854
views
Textbook Question
A hockey puck with mass 0.160 kg is at rest at the origin (x = 0) on the horizontal, frictionless surface of the rink. At time t = 0 a player applies a force of 0.250 N to the puck, parallel to the x-axis; she continues to apply this force until t = 2.00s. (b) If the same force is again applied at t = 5.00 s, what are the position and speed of the puck at t = 7.00 s?
1890
views
Textbook Question
A 4.50-kg experimental cart undergoes an acceleration in a straight line (the x-axis). The graph in Fig. E4.13 shows this acceleration as a function of time. (a) Find the maximum net force on this cart. When does this maximum force occur?
1721
views
Textbook Question
A 4.50-kg experimental cart undergoes an acceleration in a straight line (the x-axis). The graph in Fig. E4.13 shows this acceleration as a function of time. (b) During what times is the net force on the cart a constant?
480
views