Ch 04: Newton's Laws of Motion
Chapter 4, Problem 5
A 5.00-kg crate is suspended from the end of a short vertical rope of negligible mass. An upward force F(t) is applied to the end of the rope, and the height of the crate above its initial position is given by y(t) = (2.80 m/s)t + (0.610 m/s3)t3. What is the magnitude of F when t = 4.00 s?
Verified Solution
Video duration:
3mThis video solution was recommended by our tutors as helpful for the problem above.
Was this helpful?
Video transcript
Related Practice
Textbook Question
A man is dragging a trunk up the loading ramp of a mover's truck. The ramp has a slope angle of 20.0°, and the man pulls upward with a force F→ whose direction makes an angle of 30.0° with the ramp (Fig. E4.4). (a) How large a force F→ is necessary for the component Fx parallel to the ramp to be 90.0 N?
370
views
Textbook Question
You walk into an elevator, step onto a scale, and push the 'up' button. You recall that your normal weight is 625 N. Draw a free-body diagram. (a) When the elevator has an upward acceleration of magnitude 2.50 m/s2, what does the scale read?
347
views
Textbook Question
A 2.00-kg box is moving to the right with speed 9.00 m/s on a horizontal, frictionless surface. At t = 0 a horizontal force is applied to the box. The force is directed to the left and has magnitude F(t) = (6.00 N/s2)t2. (a) What distance does the box move from its position at t = 0 before its speed is reduced to zero?
9
views
Textbook Question
On September 8, 2004, the Genesis spacecraft crashed in the Utah desert because its parachute did not open. The 210-kg capsule hit the ground at 311 km/h and penetrated the soil to a depth of 81.0 cm. (b) What force did the ground exert on the capsule during the crash? Express the force in newtons and as a multiple of the capsule's weight.
1455
views
Textbook Question
Three sleds are being pulled horizontally on frictionless horizontal ice using horizontal ropes (Fig. E5.14). The pull is of magnitude 190 N. Find (a) the acceleration of the system
1056
views
Textbook Question
A light rope is attached to a block with mass 4.00 kg that rests on a frictionless, horizontal surface. The horizontal rope passes over a frictionless, massless pulley, and a block with mass m is suspended from the other end. When the blocks are released, the tension in the rope is 15.0 N. (b) What is the acceleration of either block?
632
views