Ch 03: Motion in Two or Three Dimensions
Chapter 3, Problem 3
The froghopper, Philaenus spumarius, holds the world record for insect jumps. When leaping at an angle of 58.0° above the horizontal, some of the tiny critters have reached a maximum height of 58.7 cm above the level ground. (See Nature, Vol. 424, July 31, 2003, p. 509.) (a) What was the takeoff speed for such a leap?
Verified Solution
Video duration:
8mThis video solution was recommended by our tutors as helpful for the problem above.
3953
views
8
rank
Was this helpful?
Video transcript
Related Practice
Textbook Question
A rookie quarterback throws a football with an initial upward velocity component of 12.0 m/s and a horizontal velocity component of 20.0 m/s. Ignore air resistance. (b) How high is this point?
1980
views
1
rank
Textbook Question
A rookie quarterback throws a football with an initial upward velocity component of 12.0 m/s and a horizontal velocity component of 20.0 m/s. Ignore air resistance. (c) How much time (after it is thrown) is required for the football to return to its original level? How does this compare with the time calculated in part (a)?
1219
views
Textbook Question
A rookie quarterback throws a football with an initial upward velocity component of 12.0 m/s and a horizontal velocity component of 20.0 m/s. Ignore air resistance. (d) How far has the football traveled horizontally during this time?
873
views
Textbook Question
On level ground a shell is fired with an initial velocity of 40.0 m/s at 60.0° above the horizontal and feels no appreciable air resistance. (a) Find the horizontal and vertical components of the shell's initial velocity.
1402
views
Textbook Question
On level ground a shell is fired with an initial velocity of 40.0 m/s at 60.0° above the horizontal and feels no appreciable air resistance. (b) How long does it take the shell to reach its highest point?
844
views
Textbook Question
On level ground a shell is fired with an initial velocity of 40.0 m/s at 60.0° above the horizontal and feels no appreciable air resistance. (c) Find its maximum height above the ground.
439
views