Skip to main content
Ch 19: Work, Heat, and the First Law of Thermodynamics
Chapter 19, Problem 19

A 750 g aluminum pan is removed from the stove and plunged into a sink filled with 10.0 L of water at 20.0°C . The water temperature quickly rises to 24.0°C. What was the initial temperature of the pan in °C and in °F?

Verified Solution

Video duration:
8m
This video solution was recommended by our tutors as helpful for the problem above.
Was this helpful?

Key Concepts

Here are the essential concepts you must grasp in order to answer the question correctly.

Heat Transfer

Heat transfer is the process by which thermal energy moves from one object to another due to a temperature difference. In this scenario, the hot aluminum pan transfers heat to the cooler water until thermal equilibrium is reached, resulting in a temperature change in both substances.
Recommended video:
Guided course
05:14
Overview of Heat Transfer

Specific Heat Capacity

Specific heat capacity is the amount of heat required to raise the temperature of a unit mass of a substance by one degree Celsius. Each material has a unique specific heat capacity, which influences how much its temperature changes when heat is added or removed. For aluminum and water, these values are crucial for calculating the initial temperature of the pan.
Recommended video:
Guided course
06:50
Specific Heat & Temperature Changes

Thermal Equilibrium

Thermal equilibrium occurs when two objects in contact reach the same temperature, resulting in no net heat flow between them. In this problem, the aluminum pan and the water reach thermal equilibrium at 24.0°C, allowing us to apply the principles of heat transfer and specific heat capacity to find the pan's initial temperature.
Recommended video:
Guided course
05:21
Volume Thermal Expansion
Related Practice
Textbook Question
A typical nuclear reactor generates 1000 MW (1000 MJ/s) of electric energy. In doing so, it produces 2000 MW of 'waste heat' that must be removed from the reactor to keep it from melting down. Many reactors are sited next to large bodies of water so that they can use the water for cooling. Consider a reactor where the intake water is at 18°C. State regulations limit the temperature of the output water to 30°C so as not to harm aquatic organisms. How many liters of cooling water have to be pumped through the reactor each minute?
696
views
Textbook Question
Liquid helium, with a boiling point of 4.2 K, is used in ultralow-temperature experiments and also for cooling the superconducting magnets used in MRI imaging in medicine. Storing liquid helium so far below room temperature is a challenge because even a small 'heat leak' will boil the helium away. A standard helium dewar, shown in FIGURE P19.67, has an inner stainless-steel cylinder filled with liquid helium surrounded by an outer cylindrical shell filled with liquid nitrogen at –196°C. The space between is a vacuum. The small structural supports have very low thermal conductivity, so you can assume that radiation is the only heat transfer between the helium and its surroundings. Suppose the helium cylinder is 16 cm in diameter and 30 cm tall and that all walls have an emissivity of 0.25. The density of liquid helium is 125 kg/m^3 and its heat of vaporization is 2.1×10^4 J/kg. a. What is the mass of helium in the filled cylinder?
701
views
1
rank
Textbook Question
Most stars are main-sequence stars, a group of stars for which size, mass, surface temperature, and radiated power are closely related. The sun, for instance, is a yellow main-sequence star with a surface temperature of 5800 K. For a main-sequence star whose mass M is more than twice that of the sun, the total radiated power, relative to the sun, is approximately P/Pₛᵤₙ=1.5(M/Mₛᵤₙ)^3.5 . The star Regulus A is a bluish main-sequence star with mass 3.8Mₛᵤₙ and radius 3.1Rₛᵤₙ. What is the surface temperature of Regulus A?
584
views
Textbook Question
10 g of aluminum at 200°C and 20 g of copper are dropped into 50 cm^3 of ethyl alcohol at 15°C. The temperature quickly comes to 25°C . What was the initial temperature of the copper?
504
views
Textbook Question
A lava flow is threatening to engulf a small town. A 400-m-wide, 35-cm-thick tongue of 1200°C lava is advancing at the rate of 1.0 m per minute. The mayor devises a plan to stop the lava in its tracks by flying in large quantities of 20°C water and dousing it. The lava has density 2500 kg/m^3, specific heat 1100 J/kg K, melting temperature 800°C, and heat of fusion 4.0×10^5 J/kg. How many liters of water per minute, at a minimum, will be needed to save the town?
537
views
Textbook Question
10 g of steam at the boiling point are combined with 50 g of ice at the freezing point. What is the final temperature of the system?
484
views