Ch 15: Oscillations
Chapter 15, Problem 15
A 500 g air-track glider attached to a spring with spring constant 10 N/m is sitting at rest on a frictionless air track. A 250 g glider is pushed toward it from the far end of the track at a speed of 120 cm/s. It collides with and sticks to the 500 g glider. What are the amplitude and period of the subsequent oscillations?
Verified Solution
Video duration:
16mThis video solution was recommended by our tutors as helpful for the problem above.
652
views
Was this helpful?
Video transcript
Related Practice
Textbook Question
An object in SHM oscillates with a period of 4.0 s and an amplitude of 10 cm. How long does the object take to move from x = 0.0 cm to x = 6.0 cm?
683
views
Textbook Question
A 500 g wood block on a frictionless table is attached to a horizontal spring. A 50 g dart is shot into the face of the block opposite the spring, where it sticks. Afterward, the spring oscillates with a period of 1.5 s and an amplitude of 20 cm. How fast was the dart moving when it hit the block?
962
views
Textbook Question
A 350 g mass on a 45-cm-long string is released at an angle of 4.5° from vertical. It has a damping constant of 0.010 kg/s. After 25 s, (a) how many oscillations has it completed and (b) what fraction of the initial energy has been lost?
429
views
Textbook Question
An air-track glider attached to a spring oscillates with a period of 1.5 s. At t = 0 s the glider is 5.00 cm left of the equilibrium position and moving to the right at 36.3 cm/s.
a. What is the phase constant?
1251
views
1
comments
Textbook Question
A 200 g air-track glider is attached to a spring. The glider is pushed in 10 cm and released. A student with a stopwatch finds that 10 oscillations take 12.0 s. What is the spring constant?
415
views
Textbook Question
A block attached to a spring with unknown spring constant oscillates with a period of 2.0 s. What is the period if
d. The spring constant is doubled?
Parts a to d are independent questions, each referring to the initial situation.
454
views