Skip to main content
Ch 15: Oscillations

Chapter 15, Problem 15

A 200 g oscillator in a vacuum chamber has a frequency of 2.0 Hz. When air is admitted, the oscillation decreases to 60% of its initial amplitude in 50 s. How many oscillations will have been completed when the amplitude is 30% of its initial value?

Verified Solution
Video duration:
0m:0s
This video solution was recommended by our tutors as helpful for the problem above.
276
views
Was this helpful?
Related Practice
Textbook Question
A 200 g block hangs from a spring with spring constant 10 N/m. At t = 0 s the block is 20 cm below the equilibrium point and moving upward with a speed of 100 cm/s. What are the block's b. Distance from equilibrium when the speed is 50 cm/s?
587
views
Textbook Question
Scientists are measuring the properties of a newly discovered elastic material. They create a 1.5-m-long, 1.6-mm-diameter cord, attach an 850 g mass to the lower end, then pull the mass down 2.5 mm and release it. Their high-speed video camera records 36 oscillations in 2.0 s. What is Young's modulus of the material?
242
views
Textbook Question
A spring is standing upright on a table with its bottom end fastened to the table. A block is dropped from a height 3.0 cm above the top of the spring. The block sticks to the top end of the spring and then oscillates with an amplitude of 10 cm. What is the oscillation frequency?
229
views
Textbook Question
A block on a frictionless table is connected as shown in FIGURE P15.75 to two springs having spring constants k₁ and k₂. Find an expression for the block’s oscillation frequency f in terms of the frequencies f₁ and f₂ at which it would oscillate if attached to spring 1 or spring 2 alone.
282
views
Textbook Question
The greenhouse-gas carbon dioxide molecule CO₂ strongly absorbs infrared radiation when its vibrational normal modes are excited by light at the normal-mode frequencies. CO₂ is a linear triatomic molecule, as shown in FIGURE CP15.82, with oxygen atoms of mass mo bonded to a central carbon atom of mass mc. You know from chemistry that the atomic masses of carbon and oxygen are, respectively, 12 and 16. Assume that the bond is an ideal spring with spring constant k. There are two normal modes of this system for which oscillations take place along the axis. (You can ignore additional bending modes.) In this problem, you will find the normal modes and then use experimental data to determine the bond spring constant. g. The symmetric stretch frequency is known to be 4.00 X 10¹³ Hz. What is the spring constant of the C - O bond? Use 1 u = 1 atomic mass unit = 1.66 X 10⁻²⁷ kg to find the atomic masses in SI units. Interestingly, the spring constant is similar to that of springs you might use in the lab.
287
views