Ch 09: Work and Kinetic Energy
Chapter 9, Problem 9
A Porsche 944 Turbo has a rated engine power of 217 hp. 30% of the power is lost in the engine and the drive train, and 70% reaches the wheels. The total mass of the car and driver is 1480 kg, and two-thirds of the weight is over the drive wheels. (c) How long does it take the Porsche to reach the maximum power output?
Verified Solution
Video duration:
11mThis video solution was recommended by our tutors as helpful for the problem above.
264
views
Was this helpful?
Video transcript
Related Practice
Textbook Question
A horizontal spring with spring constant 750 N/m is attached to a wall. An athlete presses against the free end of the spring, compressing it 5.0 cm. How hard is the athlete pushing?
365
views
Textbook Question
A Porsche 944 Turbo has a rated engine power of 217 hp. 30% of the power is lost in the engine and the drive train, and 70% reaches the wheels. The total mass of the car and driver is 1480 kg, and two-thirds of the weight is over the drive wheels. (a) What is the maximum acceleration of the Porsche on a concrete surface where μₛ = 1.00 ? Hint: What force pushes the car forward?
946
views
Textbook Question
A Porsche 944 Turbo has a rated engine power of 217 hp. 30% of the power is lost in the engine and the drive train, and 70% reaches the wheels. The total mass of the car and driver is 1480 kg, and two-thirds of the weight is over the drive wheels. (b) If the Porsche accelerates at aₘₐₓ, what is its speed when it reaches maximum power output?
293
views
Textbook Question
How much work does tension do to pull the mass from the bottom of the hill (θ = 0) to the top at constant speed? To answer this question, write an expression for the work done when the mass moves through a very small distance ds while it has angle θ, replace ds with an equivalent expression involving R and dθ , then integrate.
401
views
Textbook Question
A 12 kg weather rocket generates a thrust of 200 N. The rocket, pointing upward, is clamped to the top of a vertical spring. The bottom of the spring, whose spring constant is 550 N/m, is anchored to the ground. (a) Initially, before the engine is ignited, the rocket sits at rest on top of the spring. How much is the spring compressed?
467
views
Textbook Question
A 70 kg human sprinter can accelerate from rest to 10 m/s in 3.0 s . During the same time interval, a 30 kg greyhound can go from rest to 20 m/s . What is the average power output of each? Average power over a time interval ∆t is ∆E/∆t .
583
views