Hey, guys. So by now, what we've seen is that when you have a net force that pushes an object, it's going to accelerate in that direction. Well, you're going to need to know how to solve problems where an object is said to be in equilibrium. So we're going to be talking about what that equilibrium term means in this video, and we're going to do some examples. Let's check it out. So guys, the big idea here is if all the forces that are acting on an object cancel out. If all the forces cancel, then this object is at equilibrium. So what that means from your F equals m*a is that the sum of all forces is equal to 0, and so therefore your acceleration is equal to 0. Let's do a couple of examples so I can show you how this works here. So we've got these 2 equal forces that are acting on this box or pulling, and we know that this box is going to be moving at a constant 5 meters per second. So we know that v equals 5. It doesn't matter if it's moving left or right. So I'm just going to point to the right there. So we're going to assume that the box has no weight. And what we want to do is we want to calculate the box's acceleration. So we want to calculate acceleration. We've got forces involved. We know we're going to have to use some F equals m*a. But first, we're going to have to draw the free body diagram. So the first thing we would do is we would check for the weight force. But remember that this problem has, we're going to assume that the box has no weight. We're going to skip that one. We've already got the applied forces here, and there's no cables, so there's no tensions. And then there are no 2 surfaces in contact, so there are no normals or frictions or anything like that. So our free body diagram is done, and now we just have to write F equals m*a. So we've got F equals m*a here. Now what happens is we have all the forces involved. We know the 2 applied forces. So we're going to start from the left side of F equals m*a. We have all the forces, and I'm just going to make this the one direct direction, I've got 10. And then that means that this one is negative 10 because it points in the opposite direction. Then I equals m*a. So we know that the 10 and the negative 10 are going to cancel out to 0. So this means 0 equals m*a. And what that means here is that the acceleration is equal to 0, and that's what we said equilibrium was. The forces canceled out, so that means that the acceleration is equal to 0. So let me go ahead and actually make a conceptual point here that's really important. So one of the things we've seen here is that equilibrium doesn't mean that an object isn't moving. It doesn't mean that v is equal to 0. We actually saw from the problem that the v, that the velocity of the box is 5 meters per second. Equilibrium means that the object isn't accelerating, which means from F equals m*a, then we know a is equal to 0. So this box is just going to keep moving at 5 meters per second. Alright? So it's an important conceptual point that you will need to know to, you know, make sure you remember that. Alright. Let's move on to the next one. So here we've got a 2-kilogram book, and it's going to rest on the table, and it's going to stay at rest. And we're going to assume that the book does have or the books do have weight, and we want to calculate the forces that are acting on this book. So, again, just like we did in the last problem, we'd have to draw a free body diagram, but here, we actually do have to account for the weight force. So the weight force points down. This is W equals m*g. And then we don't have any applied forces or tensions or anything like that, but we do have 2 surfaces in contact, unlike how we did in the first example. So we do have a normal force that points perpendicular to the surface, which is basically just the table that it's resting on. So this is our normal force. We don't know what that is. We actually want to calculate the forces that are acting on the book. So now we've got our free body diagram. We just go into F equals m*a. So we've got F equals m*a here. We know that the normal force is going to be up, so I'm going to choose that to be positive. So I've got normal force, and then my m*g points down. So I've got minus m*g, and this is equal to m*a. Well, unlike what we did in the first example, what we have to do in this problem is we have to start on the right side of F equals m*a. Because one thing we know about this problem is we're told that the book is going to be at rest and stays at rest. So what that means is that the acceleration is equal to 0. It's going to stay at rest, and it doesn't accelerate or anything like that. So here we know that a is equal to 0, which means that we have n equal minusmg equals 0. And so when you move it to the other side, we have that n is equal to m*g. So that means that both of the forces are going to be equal and opposite. We have 2 times 9.8, and we get 19.6 newtons. So here, we have the magnitude of those two forces. We know that n is going to be 19.6 up and m*g is going to be 19.6 down. But just like the first example, what we see here is that the forces are going to cancel. You have the same equal forces just in opposite directions. So that actually brings me back to the point. The whole point of equilibrium is that you're going to start off from F equals m*a, and there's basically going to be 2 different kinds of problems. In some problems, you're going to know by all the forces that they're going to cancel, like we did in this first problem here. We had 2 equal forces. So you know on the left side of F equals m*a that all the forces are going to cancel. That means F is, the sum of forces is 0, and that means that the acceleration is equal to 0. Now in other problems, like we did in this problem over here is we actually have that this book is at rest. So in other problems, you're going to have to basically extract or learn from the problem that the acceleration is equal to 0. And so if the acceleration is equal to 0, then that means that you know the forces are going to cancel. It's basically 2 different sides of the same coin here. So if you know 1, you know the other. If you know the forces cancel, you know a is 0. If you know a is 0, then you know the forces cancel. So, hopefully, that makes sense, guys. But that's it for this one. Let's move on.
Table of contents
- 0. Math Review Coming soon
- 1. Intro to Physics Units1h 24m
- 2. 1D Motion / Kinematics3h 56m
- Vectors, Scalars, & Displacement13m
- Average Velocity32m
- Intro to Acceleration7m
- Position-Time Graphs & Velocity26m
- Conceptual Problems with Position-Time Graphs22m
- Velocity-Time Graphs & Acceleration5m
- Calculating Displacement from Velocity-Time Graphs15m
- Conceptual Problems with Velocity-Time Graphs10m
- Calculating Change in Velocity from Acceleration-Time Graphs10m
- Graphing Position, Velocity, and Acceleration Graphs11m
- Kinematics Equations37m
- Vertical Motion and Free Fall19m
- Catch/Overtake Problems23m
- 3. Vectors2h 43m
- Review of Vectors vs. Scalars1m
- Introduction to Vectors7m
- Adding Vectors Graphically22m
- Vector Composition & Decomposition11m
- Adding Vectors by Components13m
- Trig Review24m
- Unit Vectors15m
- Introduction to Dot Product (Scalar Product)12m
- Calculating Dot Product Using Components12m
- Intro to Cross Product (Vector Product)23m
- Calculating Cross Product Using Components17m
- 4. 2D Kinematics1h 42m
- 5. Projectile Motion3h 6m
- 6. Intro to Forces (Dynamics)3h 22m
- 7. Friction, Inclines, Systems2h 44m
- 8. Centripetal Forces & Gravitation7h 26m
- Uniform Circular Motion7m
- Period and Frequency in Uniform Circular Motion20m
- Centripetal Forces15m
- Vertical Centripetal Forces10m
- Flat Curves9m
- Banked Curves10m
- Newton's Law of Gravity30m
- Gravitational Forces in 2D25m
- Acceleration Due to Gravity13m
- Satellite Motion: Intro5m
- Satellite Motion: Speed & Period35m
- Geosynchronous Orbits15m
- Overview of Kepler's Laws5m
- Kepler's First Law11m
- Kepler's Third Law16m
- Kepler's Third Law for Elliptical Orbits15m
- Gravitational Potential Energy21m
- Gravitational Potential Energy for Systems of Masses17m
- Escape Velocity21m
- Energy of Circular Orbits23m
- Energy of Elliptical Orbits36m
- Black Holes16m
- Gravitational Force Inside the Earth13m
- Mass Distribution with Calculus45m
- 9. Work & Energy1h 59m
- 10. Conservation of Energy2h 54m
- Intro to Energy Types3m
- Gravitational Potential Energy10m
- Intro to Conservation of Energy32m
- Energy with Non-Conservative Forces20m
- Springs & Elastic Potential Energy19m
- Solving Projectile Motion Using Energy13m
- Motion Along Curved Paths4m
- Rollercoaster Problems13m
- Pendulum Problems13m
- Energy in Connected Objects (Systems)24m
- Force & Potential Energy18m
- 11. Momentum & Impulse3h 40m
- Intro to Momentum11m
- Intro to Impulse14m
- Impulse with Variable Forces12m
- Intro to Conservation of Momentum17m
- Push-Away Problems19m
- Types of Collisions4m
- Completely Inelastic Collisions28m
- Adding Mass to a Moving System8m
- Collisions & Motion (Momentum & Energy)26m
- Ballistic Pendulum14m
- Collisions with Springs13m
- Elastic Collisions24m
- How to Identify the Type of Collision9m
- Intro to Center of Mass15m
- 12. Rotational Kinematics2h 59m
- 13. Rotational Inertia & Energy7h 4m
- More Conservation of Energy Problems54m
- Conservation of Energy in Rolling Motion45m
- Parallel Axis Theorem13m
- Intro to Moment of Inertia28m
- Moment of Inertia via Integration18m
- Moment of Inertia of Systems23m
- Moment of Inertia & Mass Distribution10m
- Intro to Rotational Kinetic Energy16m
- Energy of Rolling Motion18m
- Types of Motion & Energy24m
- Conservation of Energy with Rotation35m
- Torque with Kinematic Equations56m
- Rotational Dynamics with Two Motions50m
- Rotational Dynamics of Rolling Motion27m
- 14. Torque & Rotational Dynamics2h 5m
- 15. Rotational Equilibrium3h 39m
- 16. Angular Momentum3h 6m
- Opening/Closing Arms on Rotating Stool18m
- Conservation of Angular Momentum46m
- Angular Momentum & Newton's Second Law10m
- Intro to Angular Collisions15m
- Jumping Into/Out of Moving Disc23m
- Spinning on String of Variable Length20m
- Angular Collisions with Linear Motion8m
- Intro to Angular Momentum15m
- Angular Momentum of a Point Mass21m
- Angular Momentum of Objects in Linear Motion7m
- 17. Periodic Motion2h 9m
- 18. Waves & Sound3h 40m
- Intro to Waves11m
- Velocity of Transverse Waves21m
- Velocity of Longitudinal Waves11m
- Wave Functions31m
- Phase Constant14m
- Average Power of Waves on Strings10m
- Wave Intensity19m
- Sound Intensity13m
- Wave Interference8m
- Superposition of Wave Functions3m
- Standing Waves30m
- Standing Wave Functions14m
- Standing Sound Waves12m
- Beats8m
- The Doppler Effect7m
- 19. Fluid Mechanics2h 27m
- 20. Heat and Temperature3h 7m
- Temperature16m
- Linear Thermal Expansion14m
- Volume Thermal Expansion14m
- Moles and Avogadro's Number14m
- Specific Heat & Temperature Changes12m
- Latent Heat & Phase Changes16m
- Intro to Calorimetry21m
- Calorimetry with Temperature and Phase Changes15m
- Advanced Calorimetry: Equilibrium Temperature with Phase Changes9m
- Phase Diagrams, Triple Points and Critical Points6m
- Heat Transfer44m
- 21. Kinetic Theory of Ideal Gases1h 50m
- 22. The First Law of Thermodynamics1h 26m
- 23. The Second Law of Thermodynamics3h 11m
- 24. Electric Force & Field; Gauss' Law3h 42m
- 25. Electric Potential1h 51m
- 26. Capacitors & Dielectrics2h 2m
- 27. Resistors & DC Circuits3h 8m
- 28. Magnetic Fields and Forces2h 23m
- 29. Sources of Magnetic Field2h 30m
- Magnetic Field Produced by Moving Charges10m
- Magnetic Field Produced by Straight Currents27m
- Magnetic Force Between Parallel Currents12m
- Magnetic Force Between Two Moving Charges9m
- Magnetic Field Produced by Loops andSolenoids42m
- Toroidal Solenoids aka Toroids12m
- Biot-Savart Law (Calculus)18m
- Ampere's Law (Calculus)17m
- 30. Induction and Inductance3h 37m
- 31. Alternating Current2h 37m
- Alternating Voltages and Currents18m
- RMS Current and Voltage9m
- Phasors20m
- Resistors in AC Circuits9m
- Phasors for Resistors7m
- Capacitors in AC Circuits16m
- Phasors for Capacitors8m
- Inductors in AC Circuits13m
- Phasors for Inductors7m
- Impedance in AC Circuits18m
- Series LRC Circuits11m
- Resonance in Series LRC Circuits10m
- Power in AC Circuits5m
- 32. Electromagnetic Waves2h 14m
- 33. Geometric Optics2h 57m
- 34. Wave Optics1h 15m
- 35. Special Relativity2h 10m
6. Intro to Forces (Dynamics)
Vertical Equilibrium & The Normal Force
Struggling with Physics?
Join thousands of students who trust us to help them ace their exams!Watch the first videoVideo duration:
5mPlay a video:
Related Videos
Related Practice
Vertical Equilibrium & The Normal Force practice set
