Hey, guys. So in this video, we're going to start talking about the conservation of angular momentum. Let's check it out. So remember when we talked about linear momentum, that the most important part about linear momentum was the fact that it was conserved or that it is conserved. Right? It's conserved in certain situations. We'll talk about that in just a bit. The same thing is going to happen for angular momentum. Most angular momentum problems are going to be about the conservation of angular momentum. So they're going to be about conservation. They're going to be conservation problems. Okay? So what I want to do here is do sort of a compare and contrast between linear momentum and its angular equivalent, angular momentum. So linear momentum little p is mass times velocity. Angular momentum big l is I omega. Moment of inertia and angular speed. Linear momentum is conserved. There are no external forces. And angular momentum is conserved. There are no external torques. Right? And this should make sense. Angular momentum is the rotation equivalent of linear momentum. Torques is the rotation equivalent of forces. Now, an even better description is it's actually not that there are no forces. It's just that there are no external forces, or that there are, that if there are external forces, they cancel, they at least cancel each other out. So an even better definition is if the sum of external forces again, they could exist just as they just have to add up to 0. Same thing here. The sum of the external torques has to be 0. This is the condition for conservation of linear momentum and the conservation of angular momentum. In the vast majority, of physics problems, those quantities are conserved. Certainly, all the problems we're going to look into from now on for angular momentum will have conservation. Alright. One difference between these is that most problems for linear momentum involve 2 objects. Pretty much all of them involve 2 objects colliding against each other. Okay. So the conservation equation will look like this: P initial = P final. Right? So it's saying that momentum doesn't change. This is of the system. So I can expand this equation and I have 2 objects. So P_initial becomes P_initial_1 + P_initial_2 = P_final_1 + P_final_2. So it's going to be this very familiar equation. M1*v1_initial + M2*v2_initial = M1*v1_final + M2*v2_final. Now, angular momentum is a bit different; there are a lot of angular momentum problems that involve just a single object. Right? So the most classic probably the most classic angular momentum, conservation of angular momentum question is when you have an ice skater. So let's say you have a girl ice skating, and she is spinning with her arms open and she closes her arms, and she's going to spin faster. This is a conservation of angular momentum question. We're going to solve this later. And it's just one object. It's one body that's spinning. Okay? Now, the conservation equation will be similar. I'm going to have that L_initial = L_final. Right? Because L doesn't change. That's the whole deal. And l is I omega. So I'm going to say that I_initial omega_initial is not going to change. It's a constant. Okay? But what I want to do here is I want to expand this equation a little bit to show you something. So moment of inertia, I, for a point mass is something like m r^2. For a shape, it's something like, let's say, for a solid cylinder to be (1/2)m r^2. For another object, for like a solid sphere, it'd be (2/5)m r^2. The point that I want to make here is that it's something m r^2. Right? What changes is that here you have half, you have 2/5. Here there's like a one that hides in there. Right? That's implicit. We don't have to write. So I'm going to say that this takes the shape of the box, which is some fraction, m r^2. And then I have omega. So I'm just expanding I omega to show you this, and I'm going to say that this is a constant. This is constant. Constant. K? Meaning, this number doesn't change. So, really, the kinds of problems you're going to have, there are 2 basic types of problems. In one type, the mass will change. I'm going to put a little Delta here on top of M, the mass will change, which will cause a change in Omega. And the other type of problem, the r will change and cause the change in omega. So if the mass of the system changes, the system will slow down. Right? You might be able to see here if this mass grows, the system will slow down, or if the radius of the system, the effective total radius of the system increases, then the mass, the velocity, of rotation will go down as well. So the opposite case of what I just mentioned with the girl spinning is if she's spinning like this and then she opens her arms, she slows down. And that's because her total r, right, you can see that these things are going away from the axis of rotation. So the r grows, therefore, the omega becomes smaller. Okay? So the two types of changes we're going to have for one object is that either, either m or r will change, and those will cause a change in omega. Okay? Change in omega. Now when we have 2 objects, when we have 2 objects, we have problems where you're essentially adding or removing mass. So the classic example here is there's a disc that's spinning. You add a little block to it. What happens? Well, the disc is now going to spin a little bit slower, and we can calculate that. Okay? When we had linear momentum, the 2 big groups of problems we had were push-away problems where 2 things would like when you shoot a gun, the bullet goes this way, the gun goes this way, or collision problems. So push away, 2 things are going away from each other. Collision, 2 things are coming into each other. Okay? And we also had, we also had these types of problems where you're adding or removing a mass, adding or removing a mass, in linear motion, which if you think about it, adding a mass is a collision. Right? One mass joins the other. And, removing a mass is really a push-away problem, as if you jump out of a, of a, of escape or something. Alright? So anyway, that's it for that. Let's do I have an introductory example here talking about a bunch of different situations to see so we can discuss what happens in these situations. And we want, we want to figure out whether the angular speed, omega, will increase or decrease. Alright. So a nice skater, we just mentioned this nice skater spins on frictionless ice. What happens to her angular momentum if she closes her arms? If you close your arms, you spin faster. You might know this from class, from just watching TV, from doing it yourself, or we're going to use the equation here. So what I'm going to do is I'm going to say, L is a constant. L, which is Iω, is a constant. I'm going to expand Iω into something m r^2 Omega, and this is a constant. I'm just going to write c. And look, what's happening here is that by closing her arms, by closing her arms, her r is decreasing, therefore, her omega is going to increase. So the answer is that omega increases. Omega will increase. Alright. B, a large horizontal disc spins around itself. What happens to the disc's angular speed if you land on it? So there's a disc spinning around itself like this. You land on it right here. So this is you. You got added to the disc. What happens to the disc's speed? Well, I equals I omega is constant. I'm going to expand Iω to be something m r^2 k times omega. I m r^2 times omega is a constant. What's happening here is there's mass being added to the system. Therefore, the system will slow down. So I'm going to write here that omega will decrease. Alright. C, an object is tied to a point via a string that spins horizontally around it. So here's an object and it's tied to a point here. It's connected by a string and it's going to spin horizontally around the string. So an object is going like this because it's connected to a string, and what we want to know is what happens if you shorten the string. So again, I equals I omega is a constant. C I omega, I'm going to expand to be something, m r^2. It doesn't matter what this something is for these problems. We're just doing a quick, analysis of what would happen. If you remove, if you shorten the string, if you shorten the length of the string, you're shortening the radius of rotation of this object. Therefore, the omega will increase. Omega increases. Okay? You can imagine that if you spin something on a really long cable, the second you pull the cable in, it's going to spin instead of spinning like this, it's going to get faster like this. K. And then the last one, a star like the sun spins around itself. Cool. And I want to know what happens if it collapses and loses half of its mass and half of its radius. Okay? So, you might know this, you may know this, stars live for obviously billions of years. Eventually, they run out of star fuel and they collapse. And what that means is that they're going to significantly shrink in size, in in volume, and in mass. K? So that's going to happen to our sun, like in 10 billion years. You're safe. Don't worry. So what happens if it collapses and loses half of its mass and half of its radius? So I l equals Iω c. It's an object that spins, but it's not going to, its angular momentum is conserved even though this thing is blowing up. Right? So I have this is going to be something m r^2 omega, and that's a constant. So here we actually have precise numbers half and half. So if this goes down by a factor of 2, get that, and then this goes down by a factor of 2, Notice that r is squared. So I'm going to actually square the factor of 2. Let me get out of the way. So the net result of this going down by a factor of 2 is that it actually goes down by the whole thing goes down by a factor of 4. So I have this going down by a factor of 2, this going down by a factor of 4. I multiply those 2, and I have, this thing growing by a factor of 8. Okay. So 2 times 4 is 8. If these two variables here become 8 times smaller, this variable has to become 8 times greater so that the whole thing is a constant. So this star would then spin 8 times faster, 8 times faster than it was before it collapsed. Okay? So that's it for this one. Some introduction in terms of what to expect in these different kinds of problems. We're going to solve most of these later on. But that's it. Let me know if you have any questions and let's get going.
Table of contents
- 0. Math Review31m
- 1. Intro to Physics Units1h 24m
- 2. 1D Motion / Kinematics3h 56m
- Vectors, Scalars, & Displacement13m
- Average Velocity32m
- Intro to Acceleration7m
- Position-Time Graphs & Velocity26m
- Conceptual Problems with Position-Time Graphs22m
- Velocity-Time Graphs & Acceleration5m
- Calculating Displacement from Velocity-Time Graphs15m
- Conceptual Problems with Velocity-Time Graphs10m
- Calculating Change in Velocity from Acceleration-Time Graphs10m
- Graphing Position, Velocity, and Acceleration Graphs11m
- Kinematics Equations37m
- Vertical Motion and Free Fall19m
- Catch/Overtake Problems23m
- 3. Vectors2h 43m
- Review of Vectors vs. Scalars1m
- Introduction to Vectors7m
- Adding Vectors Graphically22m
- Vector Composition & Decomposition11m
- Adding Vectors by Components13m
- Trig Review24m
- Unit Vectors15m
- Introduction to Dot Product (Scalar Product)12m
- Calculating Dot Product Using Components12m
- Intro to Cross Product (Vector Product)23m
- Calculating Cross Product Using Components17m
- 4. 2D Kinematics1h 42m
- 5. Projectile Motion3h 6m
- 6. Intro to Forces (Dynamics)3h 22m
- 7. Friction, Inclines, Systems2h 44m
- 8. Centripetal Forces & Gravitation7h 26m
- Uniform Circular Motion7m
- Period and Frequency in Uniform Circular Motion20m
- Centripetal Forces15m
- Vertical Centripetal Forces10m
- Flat Curves9m
- Banked Curves10m
- Newton's Law of Gravity30m
- Gravitational Forces in 2D25m
- Acceleration Due to Gravity13m
- Satellite Motion: Intro5m
- Satellite Motion: Speed & Period35m
- Geosynchronous Orbits15m
- Overview of Kepler's Laws5m
- Kepler's First Law11m
- Kepler's Third Law16m
- Kepler's Third Law for Elliptical Orbits15m
- Gravitational Potential Energy21m
- Gravitational Potential Energy for Systems of Masses17m
- Escape Velocity21m
- Energy of Circular Orbits23m
- Energy of Elliptical Orbits36m
- Black Holes16m
- Gravitational Force Inside the Earth13m
- Mass Distribution with Calculus45m
- 9. Work & Energy1h 59m
- 10. Conservation of Energy2h 54m
- Intro to Energy Types3m
- Gravitational Potential Energy10m
- Intro to Conservation of Energy32m
- Energy with Non-Conservative Forces20m
- Springs & Elastic Potential Energy19m
- Solving Projectile Motion Using Energy13m
- Motion Along Curved Paths4m
- Rollercoaster Problems13m
- Pendulum Problems13m
- Energy in Connected Objects (Systems)24m
- Force & Potential Energy18m
- 11. Momentum & Impulse3h 40m
- Intro to Momentum11m
- Intro to Impulse14m
- Impulse with Variable Forces12m
- Intro to Conservation of Momentum17m
- Push-Away Problems19m
- Types of Collisions4m
- Completely Inelastic Collisions28m
- Adding Mass to a Moving System8m
- Collisions & Motion (Momentum & Energy)26m
- Ballistic Pendulum14m
- Collisions with Springs13m
- Elastic Collisions24m
- How to Identify the Type of Collision9m
- Intro to Center of Mass15m
- 12. Rotational Kinematics2h 59m
- 13. Rotational Inertia & Energy7h 4m
- More Conservation of Energy Problems54m
- Conservation of Energy in Rolling Motion45m
- Parallel Axis Theorem13m
- Intro to Moment of Inertia28m
- Moment of Inertia via Integration18m
- Moment of Inertia of Systems23m
- Moment of Inertia & Mass Distribution10m
- Intro to Rotational Kinetic Energy16m
- Energy of Rolling Motion18m
- Types of Motion & Energy24m
- Conservation of Energy with Rotation35m
- Torque with Kinematic Equations56m
- Rotational Dynamics with Two Motions50m
- Rotational Dynamics of Rolling Motion27m
- 14. Torque & Rotational Dynamics2h 5m
- 15. Rotational Equilibrium3h 39m
- 16. Angular Momentum3h 6m
- Opening/Closing Arms on Rotating Stool18m
- Conservation of Angular Momentum46m
- Angular Momentum & Newton's Second Law10m
- Intro to Angular Collisions15m
- Jumping Into/Out of Moving Disc23m
- Spinning on String of Variable Length20m
- Angular Collisions with Linear Motion8m
- Intro to Angular Momentum15m
- Angular Momentum of a Point Mass21m
- Angular Momentum of Objects in Linear Motion7m
- 17. Periodic Motion2h 9m
- 18. Waves & Sound3h 40m
- Intro to Waves11m
- Velocity of Transverse Waves21m
- Velocity of Longitudinal Waves11m
- Wave Functions31m
- Phase Constant14m
- Average Power of Waves on Strings10m
- Wave Intensity19m
- Sound Intensity13m
- Wave Interference8m
- Superposition of Wave Functions3m
- Standing Waves30m
- Standing Wave Functions14m
- Standing Sound Waves12m
- Beats8m
- The Doppler Effect7m
- 19. Fluid Mechanics2h 27m
- 20. Heat and Temperature3h 7m
- Temperature16m
- Linear Thermal Expansion14m
- Volume Thermal Expansion14m
- Moles and Avogadro's Number14m
- Specific Heat & Temperature Changes12m
- Latent Heat & Phase Changes16m
- Intro to Calorimetry21m
- Calorimetry with Temperature and Phase Changes15m
- Advanced Calorimetry: Equilibrium Temperature with Phase Changes9m
- Phase Diagrams, Triple Points and Critical Points6m
- Heat Transfer44m
- 21. Kinetic Theory of Ideal Gases1h 50m
- 22. The First Law of Thermodynamics1h 26m
- 23. The Second Law of Thermodynamics3h 11m
- 24. Electric Force & Field; Gauss' Law3h 42m
- 25. Electric Potential1h 51m
- 26. Capacitors & Dielectrics2h 2m
- 27. Resistors & DC Circuits3h 8m
- 28. Magnetic Fields and Forces2h 23m
- 29. Sources of Magnetic Field2h 30m
- Magnetic Field Produced by Moving Charges10m
- Magnetic Field Produced by Straight Currents27m
- Magnetic Force Between Parallel Currents12m
- Magnetic Force Between Two Moving Charges9m
- Magnetic Field Produced by Loops andSolenoids42m
- Toroidal Solenoids aka Toroids12m
- Biot-Savart Law (Calculus)18m
- Ampere's Law (Calculus)17m
- 30. Induction and Inductance3h 37m
- 31. Alternating Current2h 37m
- Alternating Voltages and Currents18m
- RMS Current and Voltage9m
- Phasors20m
- Resistors in AC Circuits9m
- Phasors for Resistors7m
- Capacitors in AC Circuits16m
- Phasors for Capacitors8m
- Inductors in AC Circuits13m
- Phasors for Inductors7m
- Impedance in AC Circuits18m
- Series LRC Circuits11m
- Resonance in Series LRC Circuits10m
- Power in AC Circuits5m
- 32. Electromagnetic Waves2h 14m
- 33. Geometric Optics2h 57m
- 34. Wave Optics1h 15m
- 35. Special Relativity2h 10m
16. Angular Momentum
Conservation of Angular Momentum
Video duration:
12mPlay a video:
Related Videos
Related Practice
Conservation of Angular Momentum practice set
