Hey guys. So for this video, I want to talk about electric flux. It's a concept that is very important in electrostatics. You'll definitely need it to solve problems, especially when we start talking about Gauss's law. So let's go ahead and check it out. Basically, the flux of anything is just a measure of how much of something passes through a surface. The way I like to think about this is kind of like if this field here was like a river and you were to stick like a ring inside of it, how much water passes through the ring? That's sort of how I like to think about flux. So when we talk about electric flux, we're going to be talking about the electric field and specifically how much of this electric field will pass through a surface. OK. So we've got these couple of examples right here, imagine these blue lines represent the electric field and this represents just a surface kind of like a ring I was just talking about. Well, in this situation, basically the flux is how much of these lines will pass through the surface. And in this case, we can say that this ring has sort of caught all of these electric field lines. So that means the electric flux is going to be all or maximum or something like that. Whereas in this situation, now we're going to have the ring, but instead of it being upright and all the field lines passing through it, what happens is that these electric field lines will pass directly over it. So imagine you were to turn that ring and instead of it being upright, you were to turn it on its side, no field lines would actually go through that ring that would kind of just go right over it or underneath it. So that means that the electric flux at this point is none or is nothing, there is no electric flux because there's nothing actually passing through the surface. Remember that the electric field that passes through the surface is defined as the electric flux. And then in this situation, we have somewhere in the middle. So some of the field lines are actually passing over it and under it. And then some of them are passing through. But at some angle here. And so in this case, the electric field line isn't an all or nothing, it's actually just some. So it's some partial amount of electric flux. So clearly what we've seen in these three examples is that the electric flux depends on the angle of the surface. Now, the way we measure this angle is we say the electric field lines make some angle with something called the normal of the surface. And the way I like to think about the normal is if my hand, the back of my hand was a surface, then there is a vector that points directly perpendicular to that surface, that's called the normal. And since the normal is the perpendicular of that surface, then the electric flux is going to be dependent on the angle that the electric field makes with that surface. And this angle here is measured between the electric fields which are the blue lines and the normal or the perpendicular vector of that surface. And if you have all those three things together, then the electric flux has an equation. It's going to be EAcosθ . Now there are some units associated with electric flux, you might not need to know them, but you can always get them back from the electric fields and the areas and things like that. And so if you have a bunch of surfaces together, not just one of them, you can calculate something called the total amount of flux, which is what we're going to use later on in the chapter. So the total amount of flux through a closed surface is just going to be the sum of all the fluxes through the individual surfaces. Now, I want to be very, very careful here about how I explain this but a closed surface, you guys might be wondering what that is, a closed surface is just sort of any boundary that encloses some volume. So the easiest one to think of is like a box. So imagine like this, right? So I have a box and yep. So that means that if there were some electric field lines sort of passing through this box, well, this box has six individual surfaces, right? So you have a flux that's going here, flux is going here, here on the bottom, on the front. And then also, I think I'm missing one somewhere over here, right? So you have these individual fluxes from these individual surfaces, but the closed surface represents sort of like that three-dimensional object that I've made here. And so the total flux to calculate through this closed surface is just going to be the sum of all the fluxes through the individual surface. And when we're doing that and we're calculating total fluxes, we know that we can have sometimes you can end up with positives and negative fluxes. Now, usually in physics, positives and negatives have to do with direction. So let's go ahead and check out the two different cases, you're going to get a positive flux whenever the electric field and the normal point in the same direction. Now why? Because if you take a look at this equation right here, if we say that these electric field lines are E and this normal or this normal, which we usually represent by the area vector point in the same direction, then we know that the cosine of the angle is going to be zero. And what's the cosine of zero, it's just positive one. So that means it's just going to correspond to a positive flux. Whereas you're going to get the opposite and negative flux whenever the electric field and the normal point in opposite directions. Now, you can probably guess why because in this case, the cosine of the angle is 180 degrees, and cosine of 180 is negative one. So the way I like to think about this is if the electric field lines are going out of a surface, it's going to be positive. But if the electric field lines are going inside of a surface, then it's going to be negative, right? That's basically the last thing I want you to know about electric fluxes. Let's go ahead and take a look at a quick example. So you've got the electric flux through each surface of a cube. So kind of like the example that I showed you above is given below. So what's the total flux through the cube? All we have to do is if you have the, if you have φ_1 + φ_2 + φ_3 + φ_4 + φ_5 + φ_6, then the net is just going to be the addition of all of them. So φ_1 + φ_2 + φ_3 + φ_4 + φ_5 + φ_6. By the way, these Greek letters right here are the letter phi. So sometimes I'll say that. So basically all you have to do is just add all of these things up. The zeros don't contribute anything. So you just have to do 100 plus 20 minus 40 minus 80 just go ahead and add all that stuff up. Well, 100 plus 20 is 120 and then negative 40 negative 80 is negative 120. So that means that the net electric flux here, φ_{net} = 0, right? And that's it. So that's basically how you would add up together these electric fluxes. Let's go ahead and take it a bunch more examples in the next coming videos. All right, let me know if you have any questions.
Table of contents
- 0. Math Review31m
- 1. Intro to Physics Units1h 23m
- 2. 1D Motion / Kinematics3h 56m
- Vectors, Scalars, & Displacement13m
- Average Velocity32m
- Intro to Acceleration7m
- Position-Time Graphs & Velocity26m
- Conceptual Problems with Position-Time Graphs22m
- Velocity-Time Graphs & Acceleration5m
- Calculating Displacement from Velocity-Time Graphs15m
- Conceptual Problems with Velocity-Time Graphs10m
- Calculating Change in Velocity from Acceleration-Time Graphs10m
- Graphing Position, Velocity, and Acceleration Graphs11m
- Kinematics Equations37m
- Vertical Motion and Free Fall19m
- Catch/Overtake Problems23m
- 3. Vectors2h 43m
- Review of Vectors vs. Scalars1m
- Introduction to Vectors7m
- Adding Vectors Graphically22m
- Vector Composition & Decomposition11m
- Adding Vectors by Components13m
- Trig Review24m
- Unit Vectors15m
- Introduction to Dot Product (Scalar Product)12m
- Calculating Dot Product Using Components12m
- Intro to Cross Product (Vector Product)23m
- Calculating Cross Product Using Components17m
- 4. 2D Kinematics1h 42m
- 5. Projectile Motion3h 6m
- 6. Intro to Forces (Dynamics)3h 22m
- 7. Friction, Inclines, Systems2h 44m
- 8. Centripetal Forces & Gravitation7h 26m
- Uniform Circular Motion7m
- Period and Frequency in Uniform Circular Motion20m
- Centripetal Forces15m
- Vertical Centripetal Forces10m
- Flat Curves9m
- Banked Curves10m
- Newton's Law of Gravity30m
- Gravitational Forces in 2D25m
- Acceleration Due to Gravity13m
- Satellite Motion: Intro5m
- Satellite Motion: Speed & Period35m
- Geosynchronous Orbits15m
- Overview of Kepler's Laws5m
- Kepler's First Law11m
- Kepler's Third Law16m
- Kepler's Third Law for Elliptical Orbits15m
- Gravitational Potential Energy21m
- Gravitational Potential Energy for Systems of Masses17m
- Escape Velocity21m
- Energy of Circular Orbits23m
- Energy of Elliptical Orbits36m
- Black Holes16m
- Gravitational Force Inside the Earth13m
- Mass Distribution with Calculus45m
- 9. Work & Energy1h 59m
- 10. Conservation of Energy2h 54m
- Intro to Energy Types3m
- Gravitational Potential Energy10m
- Intro to Conservation of Energy32m
- Energy with Non-Conservative Forces20m
- Springs & Elastic Potential Energy19m
- Solving Projectile Motion Using Energy13m
- Motion Along Curved Paths4m
- Rollercoaster Problems13m
- Pendulum Problems13m
- Energy in Connected Objects (Systems)24m
- Force & Potential Energy18m
- 11. Momentum & Impulse3h 40m
- Intro to Momentum11m
- Intro to Impulse14m
- Impulse with Variable Forces12m
- Intro to Conservation of Momentum17m
- Push-Away Problems19m
- Types of Collisions4m
- Completely Inelastic Collisions28m
- Adding Mass to a Moving System8m
- Collisions & Motion (Momentum & Energy)26m
- Ballistic Pendulum14m
- Collisions with Springs13m
- Elastic Collisions24m
- How to Identify the Type of Collision9m
- Intro to Center of Mass15m
- 12. Rotational Kinematics2h 59m
- 13. Rotational Inertia & Energy7h 4m
- More Conservation of Energy Problems54m
- Conservation of Energy in Rolling Motion45m
- Parallel Axis Theorem13m
- Intro to Moment of Inertia28m
- Moment of Inertia via Integration18m
- Moment of Inertia of Systems23m
- Moment of Inertia & Mass Distribution10m
- Intro to Rotational Kinetic Energy16m
- Energy of Rolling Motion18m
- Types of Motion & Energy24m
- Conservation of Energy with Rotation35m
- Torque with Kinematic Equations56m
- Rotational Dynamics with Two Motions50m
- Rotational Dynamics of Rolling Motion27m
- 14. Torque & Rotational Dynamics2h 5m
- 15. Rotational Equilibrium3h 39m
- 16. Angular Momentum3h 6m
- Opening/Closing Arms on Rotating Stool18m
- Conservation of Angular Momentum46m
- Angular Momentum & Newton's Second Law10m
- Intro to Angular Collisions15m
- Jumping Into/Out of Moving Disc23m
- Spinning on String of Variable Length20m
- Angular Collisions with Linear Motion8m
- Intro to Angular Momentum15m
- Angular Momentum of a Point Mass21m
- Angular Momentum of Objects in Linear Motion7m
- 17. Periodic Motion2h 9m
- 18. Waves & Sound3h 40m
- Intro to Waves11m
- Velocity of Transverse Waves21m
- Velocity of Longitudinal Waves11m
- Wave Functions31m
- Phase Constant14m
- Average Power of Waves on Strings10m
- Wave Intensity19m
- Sound Intensity13m
- Wave Interference8m
- Superposition of Wave Functions3m
- Standing Waves30m
- Standing Wave Functions14m
- Standing Sound Waves12m
- Beats8m
- The Doppler Effect7m
- 19. Fluid Mechanics2h 27m
- 20. Heat and Temperature3h 7m
- Temperature16m
- Linear Thermal Expansion14m
- Volume Thermal Expansion14m
- Moles and Avogadro's Number14m
- Specific Heat & Temperature Changes12m
- Latent Heat & Phase Changes16m
- Intro to Calorimetry21m
- Calorimetry with Temperature and Phase Changes15m
- Advanced Calorimetry: Equilibrium Temperature with Phase Changes9m
- Phase Diagrams, Triple Points and Critical Points6m
- Heat Transfer44m
- 21. Kinetic Theory of Ideal Gases1h 50m
- 22. The First Law of Thermodynamics1h 26m
- 23. The Second Law of Thermodynamics3h 11m
- 24. Electric Force & Field; Gauss' Law3h 42m
- 25. Electric Potential1h 51m
- 26. Capacitors & Dielectrics2h 2m
- 27. Resistors & DC Circuits3h 8m
- 28. Magnetic Fields and Forces2h 23m
- 29. Sources of Magnetic Field2h 30m
- Magnetic Field Produced by Moving Charges10m
- Magnetic Field Produced by Straight Currents27m
- Magnetic Force Between Parallel Currents12m
- Magnetic Force Between Two Moving Charges9m
- Magnetic Field Produced by Loops and Solenoids42m
- Toroidal Solenoids aka Toroids12m
- Biot-Savart Law (Calculus)18m
- Ampere's Law (Calculus)17m
- 30. Induction and Inductance3h 37m
- 31. Alternating Current2h 37m
- Alternating Voltages and Currents18m
- RMS Current and Voltage9m
- Phasors20m
- Resistors in AC Circuits9m
- Phasors for Resistors7m
- Capacitors in AC Circuits16m
- Phasors for Capacitors8m
- Inductors in AC Circuits13m
- Phasors for Inductors7m
- Impedance in AC Circuits18m
- Series LRC Circuits11m
- Resonance in Series LRC Circuits10m
- Power in AC Circuits5m
- 32. Electromagnetic Waves2h 14m
- 33. Geometric Optics2h 57m
- 34. Wave Optics1h 15m
- 35. Special Relativity2h 10m
24. Electric Force & Field; Gauss' Law
Electric Flux
Video duration:
5mPlay a video:
Related Videos
Related Practice