>> Hello, class. Professor Anderson here. Let's revisit the projectile motion problem that we looked at a second ago, which was let's throw an object off of a building with an initial speed Vi but upwards at an angle theta, and let's see if we can solve for how long this thing is in the air, okay, and we gave you some givens. We said that Vi was 30 meters per second, theta was-oh, we said 20, didn't we? 20 meters per second for Vi? 20 meters per second. Theta was 30, and let's say that you're sitting up there at a height 45 meters. Okay, what do we do? We want to solve for the time that it's in the air. What should I do next? Somebody give me a thought. Yeah? >> Go to our kinematic equations? >> Go to our kinematic equations. Which one do you like? >> I have no idea. >> Okay, what variables should be used, x or y? >> Probably y. >> Probably y. Okay, so let's start it out. Y final equals-What goes over here? Y initial plus what else? Anybody remember this stuff? Yeah? >> Vy initial. >> Vy initial times t. >> Plus 1/2 a t squared. >> Good. Burned into your brain. Burn these into your brain. Do it now, okay? We're already burning it into the screen, but burn it into your brain as well. Okay. That looks good, and we know a lot of this stuff, right? What's Y final when it hits the ground? Well, that's zero. We can make y equals zero wherever we want, but ground level's a natural choice. Y initial is where we started from, height h. Vy initial is what? Well, we want the vertical component of the velocity, which means Vi sine theta. Okay, that's the vertical component of our initial velocity, and then we know that a y is negative g, and so look at this equation. This is a quadratic equation. We can rewrite it in a form that you are maybe happier with, which is 1/2 g t squared minus Vi sine theta times t minus h equals zero, and just for kicks, let's multiply everything by 2. So this will become g t squared minus 2 Vi sine theta times t minus 2 h equals 0, and now that's a quadratic equation, and we can solve it for t. So remember what a quadratic equation looks like. A quadratic equation usually has the form (a x squared + b x + c) = 0, and you probably remember what the solution is, the quadratic formula. It is (negative b plus/minus the square root (b squared - 4 a c)) all over 2 a. So in our case, this is a, this is b, and this is c. So we can write t equals negative b. b is a negative number, so a negative negative becomes positive, and we get 2 Vi sine theta plus/minus the square root of b squared, (2 Vi sine theta) squared, minus 4 a c, of b squared, (2 Vi sine theta) squared, minus 4 a c, 4 times a is g; c is negative 2 h, and now all of this is over 2 a, which is 2 g. All right, and we can just rewrite this again. 2 Vi sine theta plus/minus the square root of (4 Vi squared sine squared theta plus 8 g h) and all of that over 2 g, and now this is where I want you to grab your calculators and plug in some of these numbers. So it's 2 times 20 times sine of 30 degrees plus/minus the square root of (4 (20 squared) (sine of 30 degrees squared) plus 8 times 9.8 times 45, and then all of this over 2 times 9.8. So why doesn't somebody do the square root first and tell me what you get for the square root. >> It's 62.67. >> The square root is sixty what? >> 62.67. >> 62.67. Anybody else concur on that one? Okay, you concur? All right, excellent. So let's do the other stuff. What is this first part? 40 times sine 30. What do you guys get for that? >> 20. >> 20? Okay, that makes sense, right? 30, 60, 90 (1 squared) 3 2. So sine of 30 is 1/2. Good. So we have 20 plus/minus 62.67, and then we're dividing the whole thing by 19.6. So what do we get for our two possibilities? >> 4.21. >> 4.21? >> Yes. >> Positive? >> Yes. >> 4.21 is one of the answers, and what's the other one? >> Negative 2.1. >> Negative 2.1, okay, and both of these are seconds. Okay, so you look at those, and you say, "All right, those are my two answers." Which one do you like? How long is it in the air? What are you going to punch in for your homework? >> 4.21. >> Okay, 4.21 seconds. That's how long it's in the air. What about the negative part? All right, what does that mean? Well, we have this plus/minus on our square root. We get a negative solution as well. Let's think for a second about this negative solution and see if it has any physical significance, right? We just jumped at the 4.21 answer because we like things that are positive, right? When you talk about how long, it's a positive number. What's the time in seconds? But what about this negative number? All right, the math just fell out and gave us this negative 2.1 seconds. What does that mean? Well, let's go back to our picture for a second. Here is our person. They are going to launch this object, and it's going to follow a parabola, okay. So starting from there, going to there, it's going to take 4.21 seconds. What do you think the negative 2.1 seconds means? Anybody have an idea about that? Yeah. >> Wouldn't that be when the ball or the object passed, goes below you, like the time it takes from when it passes you to hit the ground would be 2.1 seconds. >> Okay. I'm not exactly sure what you mean by that, but you're saying when it passes us to hit the ground, meaning from here to the bottom? Or something else? >> So it curves up and down like that. So once it goes up and you see it again, that would be like 4.21 minus 2.1. That's how long it took. >> Okay. >> From there to down will be 2.1. >> Okay, I think you are exactly right, but I'm going to say it slightly differently, which is the following. When we said it's 4.21 seconds from there to there, we said let's start our clock right when it's at my hand, but let's say our buddy was standing down here, and they toss this object from there, and it flew past me, and when I started my clock when it flew past me, it took 4.21 seconds to hit the ground. If I went back in time and said, "How much earlier did my friend toss the ball from here," it would be negative 2.1 seconds, okay. That's what that means. If I reverse the motion, it would take 2.1 seconds going the other way to get back down to the ground. Kind of cool, right? And I think that's basically what you were trying to say in terms of these horizontal positions, right. When it came back down to me at that point, then it would be 2.1 seconds from there on. Very good. Okay, questions about that problem? Okay, hopefully that's clear, reasonably clear. If not, definitely come see me in office hours. Cheers.
Table of contents
- 0. Math Review31m
- 1. Intro to Physics Units1h 23m
- 2. 1D Motion / Kinematics3h 56m
- Vectors, Scalars, & Displacement13m
- Average Velocity32m
- Intro to Acceleration7m
- Position-Time Graphs & Velocity26m
- Conceptual Problems with Position-Time Graphs22m
- Velocity-Time Graphs & Acceleration5m
- Calculating Displacement from Velocity-Time Graphs15m
- Conceptual Problems with Velocity-Time Graphs10m
- Calculating Change in Velocity from Acceleration-Time Graphs10m
- Graphing Position, Velocity, and Acceleration Graphs11m
- Kinematics Equations37m
- Vertical Motion and Free Fall19m
- Catch/Overtake Problems23m
- 3. Vectors2h 43m
- Review of Vectors vs. Scalars1m
- Introduction to Vectors7m
- Adding Vectors Graphically22m
- Vector Composition & Decomposition11m
- Adding Vectors by Components13m
- Trig Review24m
- Unit Vectors15m
- Introduction to Dot Product (Scalar Product)12m
- Calculating Dot Product Using Components12m
- Intro to Cross Product (Vector Product)23m
- Calculating Cross Product Using Components17m
- 4. 2D Kinematics1h 42m
- 5. Projectile Motion3h 6m
- 6. Intro to Forces (Dynamics)3h 22m
- 7. Friction, Inclines, Systems2h 44m
- 8. Centripetal Forces & Gravitation7h 26m
- Uniform Circular Motion7m
- Period and Frequency in Uniform Circular Motion20m
- Centripetal Forces15m
- Vertical Centripetal Forces10m
- Flat Curves9m
- Banked Curves10m
- Newton's Law of Gravity30m
- Gravitational Forces in 2D25m
- Acceleration Due to Gravity13m
- Satellite Motion: Intro5m
- Satellite Motion: Speed & Period35m
- Geosynchronous Orbits15m
- Overview of Kepler's Laws5m
- Kepler's First Law11m
- Kepler's Third Law16m
- Kepler's Third Law for Elliptical Orbits15m
- Gravitational Potential Energy21m
- Gravitational Potential Energy for Systems of Masses17m
- Escape Velocity21m
- Energy of Circular Orbits23m
- Energy of Elliptical Orbits36m
- Black Holes16m
- Gravitational Force Inside the Earth13m
- Mass Distribution with Calculus45m
- 9. Work & Energy1h 59m
- 10. Conservation of Energy2h 54m
- Intro to Energy Types3m
- Gravitational Potential Energy10m
- Intro to Conservation of Energy32m
- Energy with Non-Conservative Forces20m
- Springs & Elastic Potential Energy19m
- Solving Projectile Motion Using Energy13m
- Motion Along Curved Paths4m
- Rollercoaster Problems13m
- Pendulum Problems13m
- Energy in Connected Objects (Systems)24m
- Force & Potential Energy18m
- 11. Momentum & Impulse3h 40m
- Intro to Momentum11m
- Intro to Impulse14m
- Impulse with Variable Forces12m
- Intro to Conservation of Momentum17m
- Push-Away Problems19m
- Types of Collisions4m
- Completely Inelastic Collisions28m
- Adding Mass to a Moving System8m
- Collisions & Motion (Momentum & Energy)26m
- Ballistic Pendulum14m
- Collisions with Springs13m
- Elastic Collisions24m
- How to Identify the Type of Collision9m
- Intro to Center of Mass15m
- 12. Rotational Kinematics2h 59m
- 13. Rotational Inertia & Energy7h 4m
- More Conservation of Energy Problems54m
- Conservation of Energy in Rolling Motion45m
- Parallel Axis Theorem13m
- Intro to Moment of Inertia28m
- Moment of Inertia via Integration18m
- Moment of Inertia of Systems23m
- Moment of Inertia & Mass Distribution10m
- Intro to Rotational Kinetic Energy16m
- Energy of Rolling Motion18m
- Types of Motion & Energy24m
- Conservation of Energy with Rotation35m
- Torque with Kinematic Equations56m
- Rotational Dynamics with Two Motions50m
- Rotational Dynamics of Rolling Motion27m
- 14. Torque & Rotational Dynamics2h 5m
- 15. Rotational Equilibrium3h 39m
- 16. Angular Momentum3h 6m
- Opening/Closing Arms on Rotating Stool18m
- Conservation of Angular Momentum46m
- Angular Momentum & Newton's Second Law10m
- Intro to Angular Collisions15m
- Jumping Into/Out of Moving Disc23m
- Spinning on String of Variable Length20m
- Angular Collisions with Linear Motion8m
- Intro to Angular Momentum15m
- Angular Momentum of a Point Mass21m
- Angular Momentum of Objects in Linear Motion7m
- 17. Periodic Motion2h 9m
- 18. Waves & Sound3h 40m
- Intro to Waves11m
- Velocity of Transverse Waves21m
- Velocity of Longitudinal Waves11m
- Wave Functions31m
- Phase Constant14m
- Average Power of Waves on Strings10m
- Wave Intensity19m
- Sound Intensity13m
- Wave Interference8m
- Superposition of Wave Functions3m
- Standing Waves30m
- Standing Wave Functions14m
- Standing Sound Waves12m
- Beats8m
- The Doppler Effect7m
- 19. Fluid Mechanics2h 27m
- 20. Heat and Temperature3h 7m
- Temperature16m
- Linear Thermal Expansion14m
- Volume Thermal Expansion14m
- Moles and Avogadro's Number14m
- Specific Heat & Temperature Changes12m
- Latent Heat & Phase Changes16m
- Intro to Calorimetry21m
- Calorimetry with Temperature and Phase Changes15m
- Advanced Calorimetry: Equilibrium Temperature with Phase Changes9m
- Phase Diagrams, Triple Points and Critical Points6m
- Heat Transfer44m
- 21. Kinetic Theory of Ideal Gases1h 50m
- 22. The First Law of Thermodynamics1h 26m
- 23. The Second Law of Thermodynamics3h 11m
- 24. Electric Force & Field; Gauss' Law3h 42m
- 25. Electric Potential1h 51m
- 26. Capacitors & Dielectrics2h 2m
- 27. Resistors & DC Circuits3h 8m
- 28. Magnetic Fields and Forces2h 23m
- 29. Sources of Magnetic Field2h 30m
- Magnetic Field Produced by Moving Charges10m
- Magnetic Field Produced by Straight Currents27m
- Magnetic Force Between Parallel Currents12m
- Magnetic Force Between Two Moving Charges9m
- Magnetic Field Produced by Loops and Solenoids42m
- Toroidal Solenoids aka Toroids12m
- Biot-Savart Law (Calculus)18m
- Ampere's Law (Calculus)17m
- 30. Induction and Inductance3h 37m
- 31. Alternating Current2h 37m
- Alternating Voltages and Currents18m
- RMS Current and Voltage9m
- Phasors20m
- Resistors in AC Circuits9m
- Phasors for Resistors7m
- Capacitors in AC Circuits16m
- Phasors for Capacitors8m
- Inductors in AC Circuits13m
- Phasors for Inductors7m
- Impedance in AC Circuits18m
- Series LRC Circuits11m
- Resonance in Series LRC Circuits10m
- Power in AC Circuits5m
- 32. Electromagnetic Waves2h 14m
- 33. Geometric Optics2h 57m
- 34. Wave Optics1h 15m
- 35. Special Relativity2h 10m
5. Projectile Motion
Positive (Upward) Launch
Video duration:
11mPlay a video:
Related Videos
Related Practice