Skip to main content
Ch. 25 - Quantitative Genetics and Multifactorial Traits

Chapter 24, Problem 28

Floral traits in plants often play key roles in diversification, in that slight modifications of those traits, if genetically determined, may quickly lead to reproductive restrictions and evolution. Insight into genetic involvement in flower formation is often acquired through selection experiments that expose realized heritability. Lendvai and Levin (2003) conducted a series of artificial selection experiments on flower size (diameter) in Phlox drummondii. Data from their selection experiments are presented in the following table in modified form and content.

Calculate the realized heritability for each year and the overall realized heritability. 

Verified Solution
Video duration:
1m
This video solution was recommended by our tutors as helpful for the problem above.
302
views
Was this helpful?

Video transcript

Hey everyone, let's look at this question together, identify the most accurate statement about a trait that has a heritability of 0.7. So let's recall what we know about what that heritability value means to try to figure out which of the following statements is the most accurate. So when we have a heritability of 0.7, that means that 70% of the population variation is explained. Bye! Genetic Factors. And so because that only explains 70% of the population, the remaining 30% of the population is explained bye. Environmental factors, meaning characteristics of the environment having an influence on the traits. And so looking at our answer choices, we c answer choice A says it is entirely influenced by genetic factors and answer choice. B says it is entirely influenced by environmental factors, which we note that 70% are those genetic factors and 30% are the environmental factors. So it is not entirely influenced by one or the other but influenced by both. So answer choice C. Is the correct answer because we know that it is influenced by both genetic and environmental factors because 70% of the variation is explained by the genetic factors and 30% by environmental factors. And we note that it is not one or the other or neither and it is both. So answer choice C. Is the correct answer. I hope you found this video to be helpful. Thank you and goodbye
Related Practice
Textbook Question

Floral traits in plants often play key roles in diversification, in that slight modifications of those traits, if genetically determined, may quickly lead to reproductive restrictions and evolution. Insight into genetic involvement in flower formation is often acquired through selection experiments that expose realized heritability. Lendvai and Levin (2003) conducted a series of artificial selection experiments on flower size (diameter) in Phlox drummondii. Data from their selection experiments are presented in the following table in modified form and content.

In terms of evolutionary potential, is a population with high heritability likely to be favored compared to one with a low realized heritability? 

234
views
Textbook Question

Floral traits in plants often play key roles in diversification, in that slight modifications of those traits, if genetically determined, may quickly lead to reproductive restrictions and evolution. Insight into genetic involvement in flower formation is often acquired through selection experiments that expose realized heritability. Lendvai and Levin (2003) conducted a series of artificial selection experiments on flower size (diameter) in Phlox drummondii. Data from their selection experiments are presented in the following table in modified form and content.

In terms of evolutionary potential, is a population with high heritability likely to be favored compared to one with a low realized heritability? 

223
views
Textbook Question

Floral traits in plants often play key roles in diversification, in that slight modifications of those traits, if genetically determined, may quickly lead to reproductive restrictions and evolution. Insight into genetic involvement in flower formation is often acquired through selection experiments that expose realized heritability. Lendvai and Levin (2003) conducted a series of artificial selection experiments on flower size (diameter) in Phlox drummondii. Data from their selection experiments are presented in the following table in modified form and content.

Considering that differences in control values represent year-to-year differences in greenhouse conditions, calculate (in mm) the average response to selection over the three-year period. 

209
views
Textbook Question

In 1988, Horst Wilkens investigated blind cavefish, comparing them with members of a sibling species with normal vision that are found in a lake [Wilkens, H. (1988). Evol. Biol. 25:271–367]. We will call them cavefish and lakefish. Wilkens found that cavefish eyes are about seven times smaller than lakefish eyes. F₁ hybrids have eyes of intermediate size. These data, as well as the F₁×F₁ cross and those from backcrosses (F₁×cavefish and F₁×lakefish), are depicted below. Examine Wilkens's results and respond to the following questions: Wilkens examined about 1000 F₂ progeny and estimated that 6–7 genes are involved in determining eye size. Is the sample size adequate to justify this conclusion? Propose an experimental protocol to test the hypothesis.

172
views
Textbook Question

In 1988, Horst Wilkens investigated blind cavefish, comparing them with members of a sibling species with normal vision that are found in a lake [Wilkens, H. (1988). Evol. Biol. 25:271–367]. We will call them cavefish and lakefish. Wilkens found that cavefish eyes are about seven times smaller than lakefish eyes. F₁ hybrids have eyes of intermediate size. These data, as well as the F₁×F₁ cross and those from backcrosses (F₁×cavefish and F₁×lakefish), are depicted below. Examine Wilkens's results and respond to the following questions:

Based strictly on the F₁ and F₂ results of Wilkens's initial crosses, what possible explanation concerning the inheritance of eye size seems most feasible? 

173
views
Textbook Question

In 1988, Horst Wilkens investigated blind cavefish, comparing them with members of a sibling species with normal vision that are found in a lake [Wilkens, H. (1988). Evol. Biol. 25:271–367]. We will call them cavefish and lakefish. Wilkens found that cavefish eyes are about seven times smaller than lakefish eyes. F₁ hybrids have eyes of intermediate size. These data, as well as the F₁×F₁ cross and those from backcrosses (F₁×cavefish and F₁×lakefish), are depicted below. Examine Wilkens's results and respond to the following questions:

Based on the results of the F₁ backcross with lakefish, is your explanation supported? Explain.

200
views