Table of contents
- 1. Introduction to Genetics(0)
- 2. Mendel's Laws of Inheritance(0)
- 3. Extensions to Mendelian Inheritance(0)
- 4. Genetic Mapping and Linkage(0)
- 5. Genetics of Bacteria and Viruses(0)
- 6. Chromosomal Variation(0)
- 7. DNA and Chromosome Structure(0)
- 8. DNA Replication(0)
- 9. Mitosis and Meiosis(0)
- 10. Transcription(0)
- 11. Translation(0)
- 12. Gene Regulation in Prokaryotes(0)
- 13. Gene Regulation in Eukaryotes(0)
- 14. Genetic Control of Development(0)
- 15. Genomes and Genomics(0)
- 16. Transposable Elements(0)
- 17. Mutation, Repair, and Recombination(0)
- 18. Molecular Genetic Tools(0)
- 19. Cancer Genetics(0)
- 20. Quantitative Genetics(0)
- 21. Population Genetics(0)
- 22. Evolutionary Genetics(0)
18. Molecular Genetic Tools
Genetic Cloning
18. Molecular Genetic Tools
Genetic Cloning: Study with Video Lessons, Practice Problems & Examples
39PRACTICE PROBLEM
Paul Berg, a biochemist at Stanford, was one of the first to develop recombinant DNA technology. In his experimental design in 1974, Paul Berg cleaved (cut into fragments) the monkey virus SV40. He then cleaved the double helix of another virus; an antibacterial agent known as bacteriophage lambda. In the third step, he fastened DNA from the SV40 to DNA from the bacteriophage lambda. The final step involved placing the mutant genetic material into a laboratory strain of the E. coli bacterium. However, Berg did not complete his final step due to:
Paul Berg, a biochemist at Stanford, was one of the first to develop recombinant DNA technology. In his experimental design in 1974, Paul Berg cleaved (cut into fragments) the monkey virus SV40. He then cleaved the double helix of another virus; an antibacterial agent known as bacteriophage lambda. In the third step, he fastened DNA from the SV40 to DNA from the bacteriophage lambda. The final step involved placing the mutant genetic material into a laboratory strain of the E. coli bacterium. However, Berg did not complete his final step due to: