Write balanced complete ionic and net ionic equations for each reaction. d. HC2H3O2(aq) + K2CO3(aq) → H2O(l ) + CO2(g) + KC2H3O2(aq)
Write balanced molecular and net ionic equations for the reaction between hydrochloric acid and rubidium hydroxide.
Verified Solution
Key Concepts
Acid-Base Reactions
Balanced Chemical Equations
Net Ionic Equations
Mercury(I) ions (Hg22+) can be removed from solution by precipitation with Cl- Suppose that a solution contains aqueous Hg2(NO3)2. Write complete ionic and net ionic equations for the reaction of aqueous Hg2(NO3)2 with aqueous sodium chloride to form solid Hg2Cl2 and aqueous sodium nitrate.
Lead(II) ions can be removed from solution by precipitation with sulfate ions. Suppose that a solution contains lead(II) nitrate. Write complete ionic and net ionic equations for the reaction of aqueous lead(II) nitrate with aqueous potassium sulfate to form solid lead(II) sulfate and aqueous potassium nitrate.
Complete and balance each acid–base equation. b. HC2H3O2(aq) + Ca(OH)2(aq) →
A 15.00-mL sample of an unknown HClO4 solution requires titration with 17.03 mL of 0.1000 M NaOH to reach the equivalence point. What is the concentration of the unknown HClO4 solution? The neutralization reaction is HClO4(aq) + NaOH(aq) → H2O(l ) + NaClO4(aq)
A 25.00-mL sample of an unknown H3PO4 solution is titrated with a 0.150 M NaOH solution. The equivalence point is reached when 22.97 mL of NaOH solution is added. What is the concentration of the unknown H3PO4 solution? The neutralization reaction is H3PO4(aq) + 3 NaOH(aq) → 3 H2O(l) + Na3PO4(aq)