Skip to main content
Ch.19 - Free Energy & Thermodynamics
Chapter 19, Problem 95b

Living organisms use energy from the metabolism of food to create an energy-rich molecule called adenosine triphosphate (ATP). The ATP acts as an energy source for a variety of reactions that the living organism must carry out to survive. ATP provides energy through its hydrolysis, which can be symbolized as follows: ATP(aq) + H2O(l) → ADP(aq) + Pi(aq) ΔG°rxn = -30.5 kJ where ADP represents adenosine diphosphate and Pi represents an inorganic phosphate group (such as HPO42-). b. The free energy obtained from the oxidation (reaction with oxygen) of glucose (C6H12O6) to form carbon dioxide and water can be used to re-form ATP by driving the given reaction in reverse. Calculate the standard free energy change for the oxidation of glucose and estimate the maximum number of moles of ATP that can be formed by the oxidation of one mole of glucose.

Verified Solution

Video duration:
4m
This video solution was recommended by our tutors as helpful for the problem above.
Was this helpful?

Key Concepts

Here are the essential concepts you must grasp in order to answer the question correctly.

Adenosine Triphosphate (ATP)

ATP is a nucleotide that serves as the primary energy carrier in cells. It consists of adenine, ribose, and three phosphate groups. The energy stored in ATP is released when one of the phosphate bonds is hydrolyzed, converting ATP to ADP and inorganic phosphate (Pi). This process is crucial for powering various cellular processes, including muscle contraction and biochemical reactions.
Recommended video:
Guided course
03:05
Spontaneity of Processes Example

Free Energy Change (ΔG)

The free energy change (ΔG) of a reaction indicates the spontaneity and energy dynamics of that reaction. A negative ΔG value, such as -30.5 kJ for ATP hydrolysis, signifies that the reaction releases energy and can occur spontaneously. Understanding ΔG is essential for predicting whether a reaction can proceed and how much energy can be harnessed for cellular work.
Recommended video:
Guided course
01:51
Gibbs Free Energy of Reactions

Oxidation of Glucose

The oxidation of glucose is a metabolic process where glucose (C6H12O6) is broken down in the presence of oxygen to produce carbon dioxide (CO2) and water (H2O), releasing energy. This process is central to cellular respiration and is coupled with ATP synthesis. The standard free energy change for this reaction can be calculated to determine how many moles of ATP can be generated from one mole of glucose, illustrating the efficiency of energy conversion in biological systems.
Recommended video:
Guided course
00:58
Oxide Reactions
Related Practice
Textbook Question

Consider this reaction occurring at 298 K: BaCO3(s) ⇌ BaO(s) + CO2( g) b. If BaCO3 is placed in an evacuated flask, what is the partial pressure of CO2 when the reaction reaches equilibrium?

1692
views
Textbook Question

Consider this reaction occurring at 298 K: BaCO3(s) ⇌ BaO(s) + CO2(g) c. Can the reaction be made more spontaneous by an increase or decrease in temperature? If so, at what temperature is the partial pressure of carbon dioxide 1.0 atm?

1004
views
Textbook Question

Living organisms use energy from the metabolism of food to create an energy-rich molecule called adenosine triphosphate (ATP). The ATP acts as an energy source for a variety of reactions that the living organism must carry out to survive. ATP provides energy through its hydrolysis, which can be symbolized as follows: ATP(aq) + H2O(l) → ADP(aq) + Pi(aq) ΔGrxn ° = -30.5 kJ where ADP represents adenosine diphosphate and Pi represents an inorganic phosphate group (such as HPO42-). a. Calculate the equilibrium constant, K, for the given reaction at 298 K.

1492
views
Textbook Question

These reactions are important in catalytic converters in automobiles. Calculate ΔG° for each at 298 K. Predict the effect of increasing temperature on the magnitude of ΔG°.

a. 2 CO(g) + 2 NO(g) → N2(g) + 2 CO2(g)

b. 5 H2(g) + 2 NO(g) → 2 NH3(g) + 2 H2O(g)

c. 2 H2(g) + 2 NO(g) → N2(g) + 2 H2O(g)

d. 2 NH3(g) + 2 O2(g) → N2O(g) + 3 H2O(g)

505
views
Textbook Question

Calculate ΔG° at 298 K for these reactions and predict the effect on ΔG° of lowering the temperature.

a. NH3(g) + HBr(g) → NH4Br(s)

b. CaCO3(s) → CaO(s) + CO2(g)

c. CH4(g) + 3 Cl2(g) → CHCl3(g) + 3 HCl(g) (ΔG°f for CHCl3(g) is -70.4 kJ/mol.)

6500
views
1
rank
Textbook Question

All the oxides of nitrogen have positive values of ΔG°f at 298 K, but only one common oxide of nitrogen has a positive ΔS°f. Identify that oxide of nitrogen without reference to thermodynamic data and explain.

410
views