Skip to main content
Ch.14 - Solutions
Chapter 14, Problem 125

The vapor pressure of carbon tetrachloride, CCl4, is 0.354 atm, and the vapor pressure of chloroform, CHCl3, is 0.526 atm at 316 K. A solution is prepared from equal masses of these two compounds at this temperature. Calculate the mole fraction of the chloroform in the vapor above the solution. If the vapor above the original solution is condensed and isolated into a separate flask, what will the vapor pressure of chloroform be above this new solution?

Verified step by step guidance
1
Determine the molar masses of carbon tetrachloride (CCl4) and chloroform (CHCl3).
Calculate the number of moles of each compound using the formula: number of moles = mass / molar mass. Since the masses are equal, use the same mass value for both compounds.
Calculate the mole fraction of chloroform in the solution using the formula: mole fraction of CHCl3 = moles of CHCl3 / (moles of CCl4 + moles of CHCl3).
Use Raoult's Law to find the partial vapor pressures of each component in the solution. For each compound, multiply the mole fraction of the compound in the solution by its pure vapor pressure.
Calculate the total vapor pressure of the solution by adding the partial vapor pressures of CCl4 and CHCl3. Then, find the mole fraction of chloroform in the vapor phase using the formula: mole fraction of CHCl3 in vapor = partial pressure of CHCl3 / total vapor pressure.

Verified Solution

Video duration:
6m
This video solution was recommended by our tutors as helpful for the problem above.
Was this helpful?

Key Concepts

Here are the essential concepts you must grasp in order to answer the question correctly.

Vapor Pressure

Vapor pressure is the pressure exerted by a vapor in equilibrium with its liquid or solid phase at a given temperature. It reflects the tendency of particles to escape from the liquid phase into the vapor phase. The higher the vapor pressure, the more volatile the substance. In this question, the vapor pressures of carbon tetrachloride and chloroform are essential for determining the composition of the vapor above the solution.
Recommended video:
Guided course
02:40
Raoult's Law and Vapor Pressure

Raoult's Law

Raoult's Law states that the vapor pressure of a solvent in a solution is directly proportional to the mole fraction of the solvent in the solution. This principle allows us to calculate the partial pressures of each component in a mixture. In this scenario, Raoult's Law will be used to find the mole fraction of chloroform in the vapor above the solution, based on the known vapor pressures and the composition of the solution.
Recommended video:
Guided course
02:40
Raoult's Law and Vapor Pressure

Mole Fraction

Mole fraction is a way of expressing the concentration of a component in a mixture, defined as the number of moles of that component divided by the total number of moles of all components in the mixture. It is a dimensionless quantity that helps in calculating various properties of solutions, including vapor pressures. In this question, calculating the mole fraction of chloroform in the vapor is crucial for understanding the behavior of the solution and its components.
Recommended video:
Guided course
00:36
Mole Fraction Formula
Related Practice
Textbook Question

Magnesium citrate, Mg3(C6H5O7)2, belongs to a class of laxatives called hyperosmotics, which cause rapid emptying of the bowel. When a concentrated solution of magnesium citrate is consumed, it passes through the intestines, drawing water and promoting diarrhea, usually within 6 hours. Calculate the osmotic pressure of a magnesium citrate laxative solution containing 28.5 g of magnesium citrate in 235 mL of solution at 37 °C (approximate body temperature). Assume complete dissociation of the ionic compound.

1673
views
Textbook Question

A solution of a nonvolatile solute in water has a boiling point of 375.3 K. Calculate the vapor pressure of water above this solution at 338 K. The vapor pressure of pure water at this temperature is 0.2467 atm.

2683
views
1
comments
Textbook Question

The density of a 0.438 M solution of potassium chromate (K2CrO4) at 298 K is 1.063 g/mL. Calculate the vapor pressure of water above the solution. The vapor pressure of pure water at this temperature is 0.0313 atm. (Assume complete dissociation of the solute.)

1380
views
1
rank
Textbook Question

Find the mass of urea (CH4N2O) needed to prepare 50.0 g of a solution in water in which the mole fraction of urea is 0.0770.

2341
views
1
comments
Textbook Question

A solution contains 10.05 g of unknown compound dissolved in 50.0 mL of water. (Assume a density of 1.00 g/mL for water.) The freezing point of the solution is -3.16 °C. The mass percent composition of the compound is 60.97% C, 11.94% H, and the rest is O. What is the molecular formula of the compound?

1442
views
Textbook Question

The osmotic pressure of a solution containing 2.10 g of an unknown compound dissolved in 175.0 mL of solution at 25 °C is 1.93 atm. The combustion of 24.02 g of the unknown compound produced 28.16 g CO2 and 8.64 g H2O. What is the molecular formula of the compound (which contains only carbon, hydrogen, and oxygen)?

1762
views