Use data from Appendix IIB to calculate the equilibrium constants at 25 °C for each reaction. b. 2 H2S(g) ⇌ 2 H2(g) + S2(g)
Consider the reaction: I2(g) + Cl2(g) ⇌ 2 ICl(g) Kp = 81.9 at 25 °C Calculate ΔGrxn for the reaction at 25 °C under each of the following conditions: c. PICl = 2.55 atm; PI2 = 0.325 atm; PCl2 = 0.221 atm


Verified Solution

Key Concepts
Gibbs Free Energy (ΔG)
Reaction Quotient (Q)
Equilibrium Constant (Kp)
Consider the reaction: I2(g) + Cl2(g) ⇌ 2 ICl(g) Kp = 81.9 at 25 °C Calculate ΔGrxn for the reaction at 25 °C under each of the following conditions: a. standard conditions
Consider the reaction: I2(g) + Cl2(g) ⇌ 2 ICl(g) Kp = 81.9 at 25 °C Calculate ΔGrxn for the reaction at 25 °C under each of the following conditions: b. at equilibrium
Consider the reaction: 2 NO(g) + O2(g) ⇌ 2 NO2(g) The following data show the equilibrium constant for this reaction measured at several different temperatures. Use the data to find ΔH°rxn and ΔS°rxn for the reaction.
A reaction has an equilibrium constant of 8.5⨉103 at 298 K. At 755 K, the equilibrium constant is 0.65. Find ΔH°rxn for the reaction.
Determine the sign of ΔSsys for each process. a. water boiling