Chapter 9, Problem 48
Use the Born–Haber cycle and data from Appendix IIB and Table 9.3 to calculate the lattice energy of CaO. (ΔHsub for calcium is 178 kJ>mol; IE1 and IE2 for calcium are 590 kJ>mol and 1145 kJ>mol, respectively; EA1 and EA2 for O are -141 kJ>mol and 744 kJ>mol, respectively.)
Video transcript
Rubidium iodide has a lattice energy of -617 kJ>mol, while potassium bromide has a lattice energy of -671 kJ>mol. Why is the lattice energy of potassium bromide more exothermic than the lattice energy of rubidium iodide?
The lattice energy of CsF is -744 kJ>mol, whereas that of BaO is -3029 kJ>mol. Explain this large difference in lattice energy.
Use the Born–Haber cycle and data from Appendix IIB, Chapter 8 and this chapter to calculate the lattice energy of KCl. (ΔHsub for potassium is 89.0 kJ>mol.)
Write the Lewis structure for each molecule. a. PH3
Write the Lewis structure for each molecule. d. CH4
Write the Lewis structure for each molecule. a. SF2