Skip to main content
Ch.7 - Quantum-Mechanical Model of the Atom
Chapter 7, Problem 74

The human eye contains a molecule called 11-cis-retinal that changes shape when struck with light of sufficient energy. The change in shape triggers a series of events that results in an electrical signal being sent to the brain that results in vision. The minimum energy required to change the conformation of 11-cis-retinal within the eye is about 164 kJ/mol. Calculate the longest wavelength visible to the human eye.

Verified Solution

Video duration:
0m:0s
This video solution was recommended by our tutors as helpful for the problem above.
Was this helpful?

Key Concepts

Here are the essential concepts you must grasp in order to answer the question correctly.

Energy and Wavelength Relationship

The energy of a photon is inversely related to its wavelength, described by the equation E = hc/λ, where E is energy, h is Planck's constant, c is the speed of light, and λ is the wavelength. This relationship indicates that higher energy photons correspond to shorter wavelengths, while lower energy photons correspond to longer wavelengths.
Recommended video:
Guided course
00:31
Frequency-Wavelength Relationship

Visible Spectrum

The visible spectrum is the portion of the electromagnetic spectrum that can be detected by the human eye, typically ranging from about 380 nm (violet) to 750 nm (red). Understanding this range is crucial for determining the longest wavelength that can still trigger the conformational change in 11-cis-retinal, which is essential for vision.
Recommended video:
Guided course
01:24
Visible Light Spectrum

Conformational Change in Molecules

Conformational change refers to the alteration in the shape of a molecule due to external stimuli, such as light. In the case of 11-cis-retinal, the absorption of a photon with sufficient energy causes it to change from a cis to a trans configuration, initiating a biochemical cascade that ultimately leads to vision.
Recommended video:
Guided course
01:53
Chemical Changes
Related Practice
Textbook Question

An electron in the n = 7 level of the hydrogen atom relaxes to a lower-energy level, emitting light of 397 nm. What is the value of n for the level to which the electron relaxed?

8547
views
5
rank
2
comments
Textbook Question

An electron in a hydrogen atom relaxes to the n = 4 level, emitting light of 114 THz. What is the value of n for the level in which the electron originated?

4995
views
2
rank
2
comments
Textbook Question

Ultraviolet radiation and radiation of shorter wavelengths can damage biological molecules because these kinds of radiation carry enough energy to break bonds within the molecules. A typical carbon–carbon bond requires 348 kJ/mol to break. What is the longest wavelength of radiation with enough energy to break carbon–carbon bonds?

3995
views
2
rank
Textbook Question

An argon ion laser puts out 5.0 W of continuous power at a wavelength of 532 nm. The diameter of the laser beam is 5.5 mm. If the laser is pointed toward a pinhole with a diameter of 1.2 mm, how many photons travel through the pinhole per second? Assume that the light intensity is equally distributed throughout the entire cross-sectional area of the beam. (1 W = 1 J/s)

1008
views
Open Question
A green leaf has a surface area of 2.50 cm². If solar radiation is 1000 W/m², how many photons strike the leaf every second? Assume three significant figures and an average wavelength of 504 nm for solar radiation.
Open Question
In a technique used for surface analysis called Auger electron spectroscopy (AES), electrons are accelerated toward a metal surface. These electrons cause the emissions of secondary electrons—called Auger electrons—from the metal surface. The kinetic energy of the Auger electrons depends on the composition of the surface. The presence of oxygen atoms on the surface results in Auger electrons with a kinetic energy of approximately 506 eV. What is the de Broglie wavelength of one of these electrons? [KE = 1/2mv^2; 1 electron volt (eV) = 1.602 * 10^(-19) J]