Chapter 4, Problem 111d
Predict the products and write a balanced molecular equation for each reaction. If no reaction occurs, write 'NO REACTION.' d. aqueous ammonium chloride and aqueous calcium hydroxide
Video transcript
The combustion of liquid ethanol (C2H5OH) produces carbon dioxide and water. After 4.62 mL of ethanol (density = 0.789 g/mL) is allowed to burn in the presence of 15.55 g of oxygen gas, 3.72 mL of water (density = 1.00 g/mL) is collected. Determine the percent yield for the reaction. (Hint: Write a balanced equation for the combustion of ethanol.)
A hydrochloric acid solution will neutralize a sodium hydroxide solution. Look at the molecular views showing one beaker of HCl and four beakers of NaOH. Which NaOH beaker will just neutralize the HCl beaker? Begin by writing a balanced chemical equation for the neutralization reaction.
Predict the products and write a balanced molecular equation for each reaction. If no reaction occurs, write 'NO REACTION.' a. HCl(aq) + Hg2(NO3)2(aq) →
Predict the products and write a balanced molecular equation for each reaction. If no reaction occurs, write 'NO REACTION.' b. Cr(NO3)3(aq) + LiOH(aq) →
Predict the products and write a balanced molecular equation for each reaction. If no reaction occurs, write 'NO REACTION.' c. liquid pentanol (C5H12O) and gaseous oxygen
Hard water often contains dissolved Ca2+ and Mg2+ ions. One way to soften water is to add phosphates. The phosphate ion forms insoluble precipitates with calcium and magnesium ions, removing them from solution. A solution is 0.050 M in calcium chloride and 0.085 M in magnesium nitrate. What mass of sodium phosphate would you add to 1.5 L of this solution to completely eliminate the hard water ions? Assume complete reaction.