The change in enthalpy (ΔH°rxn) for a reaction is -25.8 kJ/mol. The equilibrium constant for the reaction is 1.4⨉103 at 298 K. What is the equilibrium constant for the reaction at 655 K?
Determine the sign of ΔSsys for each process. b. water freezing


Verified Solution

Key Concepts
Entropy (ΔS)
Phase Changes
Second Law of Thermodynamics
A reaction has an equilibrium constant of 8.5⨉103 at 298 K. At 755 K, the equilibrium constant is 0.65. Find ΔH°rxn for the reaction.
Determine the sign of ΔSsys for each process. a. water boiling
Nitrogen dioxide, a pollutant in the atmosphere, can combine with water to form nitric acid. One of the possible reactions is shown here. Calculate ΔG° and Kp for this reaction at 25 °C and comment on the spontaneity of the reaction. 3 NO2(g) + H2O(l)→ 2 HNO3(aq) + NO(g)
Ethene (C2H4) can be halogenated by the reaction: C2H4(g) + X2(g) → C2H4X2(g) where X2 can be Cl2, Br2, or I2. Use the thermodynamic data given to calculate ΔH°, ΔS°, ΔG°, and Kp for the halogenation reaction by each of the three halogens at 25 °C. Which reaction is most spontaneous? Least spontaneous? What is the main factor responsible for the difference in the spontaneity of the three reactions? Does higher temperature make the reactions more spontaneous or less spontaneous?
Compound ΔH°f (kJ/mol) S° (J/mol·K)
C2H4Cl2(g) -129.7 308.0
C2H4Br2(g) +38.3 330.6
C2H4I2(g) +66.5 347.8