Determine the pH of each solution. a. 0.0100 M HClO4 b. 0.115 M HClO2 c. 0.045 M Sr(OH)2 d. 0.0852 M KCN e. 0.155 M NH4Cl
Determine the pH of each two-component solution. d. 0.088 M HClO4 and 0.022 M KOH
![](/channels/images/assetPage/verifiedSolution.png)
![](/channels/images/assetPage/verifiedSolution.png)
Verified Solution
![](/channels/images/informationIcon.png)
Key Concepts
pH Scale
Strong Acids and Bases
Neutralization Reaction
Determine the pH of each solution. a. 0.0650 M HNO3 b. 0.150 M HNO2 c. 0.0195 M KOH d. 0.245 M CH3NH3I e. 0.318 M KC6H5O
Determine the pH of each two-component solution. a. 0.0550 M in HI and 0.00850 M in HF b. 0.112 M in NaCl and 0.0953 M in KF c. 0.132 M in NH4Cl and 0.150 M HNO3 d. 0.0887 M in sodium benzoate and 0.225 M in potassium bromide e. 0.0450 M in HCl and 0.0225 M in HNO3
Write net ionic equations for the reactions that take place when aqueous solutions of the following substances are mixed: a. sodium cyanide and nitric acid b. ammonium chloride and sodium hydroxide c. sodium cyanide and ammonium bromide d. potassium hydrogen sulfate and lithium acetate e. sodium hypochlorite and ammonia
Morphine has the formula C17H19NO3. It is a base and accepts one proton per molecule. It is isolated from opium. A 0.682-g sample of opium is found to require 8.92 mL of a 0.0116 M solution of sulfuric acid for neutralization. Assuming that morphine is the only acid or base present in opium, calculate the percent morphine in the sample of opium.
The pH of a 1.00 M solution of urea, a weak organic base, is 7.050. Calculate the Ka of protonated urea.