Chapter 15, Problem 87
At 70 K, CCl4 decomposes to carbon and chlorine. The Kp for the decomposition is 0.76. Find the starting pressure of CCl4 at this temperature that will produce a total pressure of 1.0 atm at equilibrium.
Video transcript
Consider the endothermic reaction: C2H4(g) + I2(g) ⇌ C2H4I2(g) If you were trying to maximize the amount of C H I produced, 242 which tactic might you try? Assume that the reaction mixture reaches equilibrium. a. decreasing the reaction volume b. removing I2 from the reaction mixture c. raising the reaction temperature d. adding C2H4 to the reaction mixture
Consider the reaction: H2(g) + I2(g) ⇌ 2 HI(g) A reaction mixture at equilibrium at 175 K contains PH2 = 0.958 atm, PI2 = 0.877 atm, and PHI = 0.020 atm. A second reaction mixture, also at 175 K, contains PH2 = PI2 = 0.621 atm and PHI = 0.101 atm. Is the second reac- tion at equilibrium? If not, what will be the partial pressure of HI when the reaction reaches equilibrium at 175 K?
A reaction vessel at 27 °C contains a mixture of SO2 (P = 3.00 atm) and O2 (P = 1.00 atm). When a catalyst is added, this reaction takes place: 2 SO2( g) + O2( g) ⇌ 2 SO3( g). At equilibrium, the total pressure is 3.75 atm. Find the value of Kc.
The equilibrium constant for the reaction SO2(g) + NO2(g) ⇌ SO3(g) + NO(g) is Kc = 3.0. Find the amount of NO2 that must be added to 2.4 mol of SO2 in order to form 1.2 mol of SO3 at equilibrium.
Carbon monoxide and chlorine gas react to form phosgene: CO(g) + Cl2(g) ⇌ COCl2(g) Kp = 3.10 at 700 K If a reaction mixture initially contains 215 torr of CO and 245 torr of Cl2, what is the mole fraction of COCl2 when equilibrium is reached?