Skip to main content
Ch.9 - Thermochemistry: Chemical Energy
Chapter 9, Problem 95

Hess's law can be used to calculate reaction enthalpies for hypothetical processes that can't be carried out in the labo- ratory. Set up a Hess's law cycle that will let you calculate ∆H° for the conversion of methane to ethylene: 2 CH4(g) → C2H4(g) + 2 H2(g) You can use the following information: 2 C2H6(g) + 7 O2(g) → 4 CO2(g) + 6 H2O(l) ∆H° = -3120.8 kJ CH4(g) + 2 O2(g) → CO2(g) + 2 H2O(l) ∆H° = -890.3 kJ C2H4(g) + H2(g) → C2H6(g) ∆H° = -136.3 kJ H2O(l) ∆H°f = -285.8 kJ/mol

Verified Solution

Video duration:
2m
This video solution was recommended by our tutors as helpful for the problem above.
Was this helpful?

Key Concepts

Here are the essential concepts you must grasp in order to answer the question correctly.

Hess's Law

Hess's Law states that the total enthalpy change for a chemical reaction is the same, regardless of the number of steps taken to complete the reaction. This principle allows chemists to calculate the enthalpy change of a reaction by using the enthalpy changes of related reactions, making it particularly useful for reactions that are difficult to measure directly.
Recommended video:

Enthalpy of Formation (∆H°f)

The enthalpy of formation (∆H°f) is the change in enthalpy when one mole of a compound is formed from its elements in their standard states. This value is crucial for calculating reaction enthalpies using Hess's Law, as it provides a reference point for the energy changes associated with the formation of compounds from their constituent elements.
Recommended video:
Guided course
02:34
Enthalpy of Formation

Standard Enthalpy Change (∆H°)

The standard enthalpy change (∆H°) refers to the heat change that occurs at constant pressure when reactants are converted to products under standard conditions (1 atm pressure and a specified temperature, usually 25°C). This value is essential for understanding the energy dynamics of chemical reactions and is used in Hess's Law calculations to derive the enthalpy changes for complex reactions.
Recommended video:
Guided course
02:34
Enthalpy of Formation
Related Practice
Textbook Question
What is Hess's law, and why does it 'work'?
596
views
Textbook Question
The following steps occur in the reaction of ethyl alcohol (CH3CH2OH) wiht oxygen to yield acetic acid (CH3CO2H). Show that equations 1 and 2 sum to give the net equation and calculate ΔH° for the net equation. (1) CH3CH2OH(l) + 1/2 O2(g) → CH3CHO (g) + H2O(l) ΔH° = -174.2 kJ (2) CH3CHO(g) + 1/2 O2(g) → CH3CO2H(l) ΔH° = -318.4 kJ (Net) CH3CH2OH(l) + O2(g) → CH3CO2H(l) + H2O(l) ΔH° = ?
682
views
Textbook Question
The industrial degreasing solvent methylene chloride, CH2Cl2, is prepared from methane by reaction with chlorine: CH4(g) + 2 Cl2(g) → CH2Cl2(g) + 2 HCl(g) Use the following data to calcualte ΔH° in kilojoules for the reaction: CH4(g) + Cl2(g) → CH3Cl(g) + HCl(g) ΔH° = -98.3 kJ CH3Cl(g) + Cl2(g) → CH2Cl2(g) + HCl(g) ΔH° = -104 kJ
709
views
Textbook Question
Find ∆H° in kilojoules for the reaciton of nitric oxide with oxygen, 2 NO(g) + O2(g) → N2O4(g), given the following data: N2O4(g) → 2 NO2(g) ∆H° = 55.3 kJ NO(g) + 1/2 O2(g) → NO2(g) ∆H° = -58.1 kJ
969
views
Textbook Question
Set up a Hess's law cycle, and use the following information to calculate ΔH°f for aqueous nitiric acid, HNO3(aq). You will need to use fractional coefficients for some equations. 3 NO2(g) + H2O(l) → 2 HNO3(aq) + NO(g) ΔH° = -137.3 kJ 2 NO(g) + O2(g) → 2 NO2(g) ΔH° = -116.2 kJ 4 NH3(g) + 5 O2(g) → 4 NO (g) + 6 H2O(l) ΔH° = -1165.2 kJ NH3(g) ΔH°f = -46.1 kJ/mol H2O(l) ΔH°f = -285.8 kJ/mol
1205
views
Textbook Question
What is a compound's standard heat of formation?
552
views