Skip to main content
Ch.9 - Thermochemistry: Chemical Energy
Chapter 9, Problem 12

A table of standard enthalpies of formation (ΔH°f) gives a value of −467.9 kJ/mol for NaNO3(s). Which reaction has a ΔH° value of −467.9 kJ? (a) Na+ (aq) + NO3−(aq) → NaNO3(s) (b) Na(s) + N(g + O3(g) → NaNO3(s) (c) Na(s) + 1/2 N2(g) + 3/2 O2(g) → NaNO3(s) (d) 2 Na(s) + N2(g) + 3 O2(g) → 2 NaNO3(s)

Verified Solution

Video duration:
3m
This video solution was recommended by our tutors as helpful for the problem above.
Was this helpful?

Key Concepts

Here are the essential concepts you must grasp in order to answer the question correctly.

Standard Enthalpy of Formation (ΔH°f)

The standard enthalpy of formation (ΔH°f) is the change in enthalpy when one mole of a compound is formed from its elements in their standard states. It is a crucial concept in thermodynamics, allowing chemists to predict the energy changes associated with chemical reactions. A negative ΔH°f value indicates that the formation of the compound is exothermic, releasing energy.
Recommended video:
Guided course
02:34
Enthalpy of Formation

Hess's Law

Hess's Law states that the total enthalpy change for a reaction is the same, regardless of the number of steps taken to achieve the reaction. This principle allows for the calculation of enthalpy changes for complex reactions by summing the enthalpy changes of individual steps. It is particularly useful when direct measurement of a reaction's enthalpy change is difficult.
Recommended video:

Stoichiometry in Chemical Reactions

Stoichiometry involves the calculation of reactants and products in chemical reactions based on the balanced chemical equation. It is essential for determining the relationships between the quantities of substances involved in a reaction. Understanding stoichiometry helps in identifying which reaction corresponds to a given enthalpy change, as it allows for the proper interpretation of coefficients in the balanced equations.
Recommended video:
Guided course
01:16
Stoichiometry Concept
Related Practice
Textbook Question
A 25.0 g piece of granite at 100.0°C was added to 100.0 g of water of 25.0°C, and the temperature rose to 28.4°C. What is the specific heat capacity of the granite? (The specific heat capacity for water is 4.18 J/(g•°C).) (LO 9.10) (a) 0.563 J/(g•°C) (b) 1.53 J/(g•°C) (c) 0.992 J/(g•°C) (d) 0.794 J/(g•°C)
1327
views
Textbook Question

When 12.5 g of NH4NO3 is dissolved in 150.0 g of water of 25.0 °C in a coffee cup calorimeter, the final temperature of the solution of 19.7 °C. Assume that the specific heat of the solution is the same as that of water, 4.18 J/(g•°C). What is the ΔH per mol of NH4NO3? (LO 9.10) NH4NO3 (s) → NH4+ (aq) + NO3−(aq) ΔH = ? (a) +3.60 kJ (b) +23.0 kJ (c) +21.3 kJ (d) −3.60 kJ

2940
views
Textbook Question
Calculate the enthalpy change for the reaction C(s) + 2 H2(g) → CH4(g) ΔH = ? Given the enthalpy values for the following reactions CH4(g) + 2 O2(g) → CO2(g) + 2 H2O(l) ΔH = −890.4 kJ C(s) + O2(g) → CO2(g) ΔH = −393.5 kJ H2(g) + 1/2 O2(g) → H2O (g) ΔH = −285.8 kJ (a) −1569.7 kJ (b) +211.1 kJ (c) −1855.5 kJ (d) −74.7 kJ
4123
views
Textbook Question
What is ΔH for the explosion of nitroglycerin? (LO 9.14) 2 C3H5(NO3)3(l) → 3 N2(g) + 1/2 O2(g) + 6 CO2(g) + 5 H2O(g) (a) −315.0 kJ (b) −4517 kJ (c) −3425 kJ (d) −3062 kJ
834
views
Textbook Question
A piece of dry ice (solid CO2) is placed inside a balloon, and the balloon is tied shut. Over time, the carbon dioxide sub- limes, causing the balloon to increase in volume. Give the sign of the enthalpy change and the sign of work for the sublima- tion of CO2.
648
views
Textbook Question

Imagine a reaction that results in a change in both volume and temperature: (a) Has any work been done? If so, is its sign positive or negative?

390
views