Skip to main content
Ch.4 - Reactions in Aqueous Solution
Chapter 4, Problem 146

Iron content in ores can be determined by a redox procedure in which the sample is first reduced with Sn2+, as in Problem 4.130, and then titrated with KMnO4 to oxidize the Fe2+ to Fe3+. The balanced equation is What is the mass percent Fe in a 2.368 g sample if 48.39 mL of a 0.1116 M KMnO4 solution is needed to titrate the Fe3 + ?

Verified Solution

Video duration:
4m
This video solution was recommended by our tutors as helpful for the problem above.
Was this helpful?

Key Concepts

Here are the essential concepts you must grasp in order to answer the question correctly.

Redox Reactions

Redox reactions involve the transfer of electrons between two species, resulting in changes in oxidation states. In this context, Sn2+ acts as a reducing agent, converting Fe3+ to Fe2+, while KMnO4 serves as an oxidizing agent, converting Fe2+ back to Fe3+. Understanding these electron transfer processes is crucial for determining the amount of iron in the sample.
Recommended video:
Guided course
03:12
Identifying Redox Reactions

Titration

Titration is a quantitative analytical technique used to determine the concentration of a solute in a solution. In this case, the volume of KMnO4 solution required to reach the endpoint of the titration indicates the amount of Fe2+ present in the sample. The stoichiometry of the reaction allows for the calculation of the mass percent of iron in the original sample.
Recommended video:
Guided course
03:04
Acid-Base Titration

Molarity and Mass Percent

Molarity is a measure of concentration expressed as moles of solute per liter of solution. To find the mass percent of iron in the sample, one must first calculate the moles of KMnO4 used in the titration, relate it to the moles of Fe2+, and then convert this to mass. The mass percent is then determined by comparing the mass of iron to the total mass of the sample.
Recommended video:
Guided course
00:38
Mass Percent Calculation
Related Practice
Textbook Question
A sample of metal (M) reacted with both steam and aqueous HCl to release H2 but did not react with water at room tem-perature. When 1.000 g of the metal was burned in oxygen, it formed 1.890 g of a metal oxide, M2O3. What is the iden-tity of the metal?
600
views
Textbook Question
An unknown metal (M) was found not to react with either water or steam, but its reactivity with aqueous acid was not investigated. When a 1.000 g sample of the metal was burned in oxygen and the resulting metal oxide converted to a metal sulfide, 1.504 g of sulfide was obtained. What is the identity of the metal?
410
views
Textbook Question
A mixture of acetic acid (CH3CO2H; monoprotic) and oxalic acid (H2C2O4; diprotic) requires 27.15 mL of 0.100 M NaOH to neutralize it. When an identical amount of the mixture is titrated, 15.05 mL of 0.0247 M KMnO4 is needed for complete reaction. What is the mass percent of each acid in the mixture? (Acetic acid does not react with MnO4 equation for the reaction of oxalic acid with MnO4 given in Problem 4.133.)
1110
views
Textbook Question
A mixture of FeCl2 and NaCl is dissolved in water, and addi-tion of aqueous silver nitrate then yields 7.0149 g of a pre-cipitate. When an identical amount of the mixture is titrated with MnO4 -, 14.28 mL of 0.198 M KMnO4 is needed for complete reaction. What are the mass percents of the two compounds in the mixture? (Na+ and Cl-do not react with MnO4 -. The equation for the reaction of Fe2+ with MnO4 was given in Problem 4.146.)
891
views
Textbook Question
Salicylic acid, used in the manufacture of aspirin, contains only the elements C, H, and O and has only one acidic hydrogen that reacts with NaOH. When 1.00 g of salicylic acid undergoes complete combustion, 2.23 g CO2 and 0.39 g H2O are obtained. When 1.00 g of salicylic acid is titrated with 0.100 M NaOH, 72.4 mL of base is needed for complete reaction. What are the empirical and molecular formulas of salicylic acid?
1105
views
Textbook Question

Compound X contains only the elements C, H, O, and S. A 5.00 g sample undergoes complete combustion to give 4.83 g of CO2, 1.48 g of H2O, and a certain amount of SO2 that is further oxidized to SO3 and dissolved in water to form sulfuric acid, H2SO4. On titration of the H2SO4, 109.8 mL of 1.00 M NaOH is needed for complete reaction. (Both H atoms in sulfuric acid are acidic and react with NaOH.) (a) What is the empirical formula of X?

628
views