Skip to main content
Ch.19 - Electrochemistry
Chapter 19, Problem 162b

The half-reactions that occur in ordinary alkaline batteries can be written as In 1999, researchers in Israel reported a new type of alkaline battery, called a 'super-iron' battery. This battery uses the same anode reaction as an ordinary alkaline battery but involves the reduction of FeO42- ion (from K2FeO4) to solid Fe(OH)3 at the cathode. (b) Write a balanced equation for the cathode half-reaction in a super-iron battery. The half-reaction occurs in a basic environment.

Verified Solution

Video duration:
3m
This video solution was recommended by our tutors as helpful for the problem above.
Was this helpful?

Key Concepts

Here are the essential concepts you must grasp in order to answer the question correctly.

Half-Reactions

Half-reactions are the individual oxidation or reduction processes that occur in an electrochemical cell. In a battery, the anode undergoes oxidation, while the cathode undergoes reduction. Understanding half-reactions is crucial for balancing redox reactions, as they allow us to separate the electron transfer processes and identify the species involved.
Recommended video:
Guided course
01:49
First-Order Half-Life

Basic Environment

A basic environment refers to a solution with a pH greater than 7, where hydroxide ions (OH-) are present. In such conditions, reactions may involve the formation of hydroxides or the consumption of protons. Recognizing the implications of a basic environment is essential for accurately writing and balancing half-reactions, particularly in alkaline batteries.
Recommended video:
Guided course
01:04
Balancing Basic Redox Reactions

Balancing Redox Reactions

Balancing redox reactions involves ensuring that both mass and charge are conserved in the overall reaction. This process typically includes balancing the number of electrons transferred, as well as the atoms involved in the oxidation and reduction processes. Mastery of this concept is vital for writing correct half-reactions, especially when dealing with complex species like FeO4^2-.
Recommended video:
Guided course
01:04
Balancing Basic Redox Reactions
Related Practice
Textbook Question

Experimental solid-oxide fuel cells that use butane (C4H10) as the fuel have been reported recently. These cells contain composite metal/metal oxide electrodes and a solid metal oxide electrolyte. The cell half-reactions are (b) Use the thermodynamic data in Appendix B to calculate the values of E° and the equilibrium constant K for the cell reaction at 25 °C. Will E° and K increase, decrease, or remain the same on raising the temperature?

300
views
Textbook Question

Experimental solid-oxide fuel cells that use butane (C4H10) as the fuel have been reported recently. These cells contain composite metal/metal oxide electrodes and a solid metal oxide electrolyte. The cell half-reactions are (c) How many grams of butane are required to produce a constant current of 10.5 A for 8.00 h? How many liters of gaseous butane at 20 °C and 815 mm Hg pressure are required?

505
views
Textbook Question

The half-reactions that occur in ordinary alkaline batteries can be written as In 1999, researchers in Israel reported a new type of alkaline battery, called a 'super-iron' battery. This battery uses the same anode reaction as an ordinary alkaline battery but involves the reduction of FeO42- ion (from K2FeO4) to solid Fe(OH)3 at the cathode. (a) Use the following standard reduction potential and any data from Appendixes C and D to calculate the standard cell potential expected for an ordinary alkaline battery:

798
views
Textbook Question

The half-reactions that occur in ordinary alkaline batteries can be written as In 1999, researchers in Israel reported a new type of alkaline battery, called a 'super-iron' battery. This battery uses the same anode reaction as an ordinary alkaline battery but involves the reduction of FeO42- ion (from K2FeO4) to solid Fe(OH)3 at the cathode. (c) A super-iron battery should last longer than an ordinary alkaline battery of the same size and weight because its cathode can provide more charge per unit mass. Quan-titatively compare the number of coulombs of charge released by the reduction of 10.0 g K2FeO4 to Fe(OH)3 with the number of coulombs of charge released by the reduction 10.0 g of MnO2 to MnO(OH).

310
views
Textbook Question
Gold metal is extracted from its ore by treating the crushed rock with an aerated cyanide solution. The unbalanced equation for the reaction is (b) Use any of the following data at 25 °C to calculate ∆G° for this reaction at 25 °C: Kf for Au(CN)2- = 6.2 x 10^38, Ka for HCN = 4.9 x 10^-10, and standard reduction potentials are
608
views
Textbook Question
Consider the redox titration of 100.0 mL of a solution of 0.010 M Fe2+ in 1.50 M H2SO4 with a 0.010 M solution of KMnO4, yielding Fe3+ and Mn2+. The titration is carried out in an electrochemical cell equipped with a platinum electrode and a calomel reference electrode consisting of an Hg2Cl2/Hg electrode in contract with a saturated KCl solution having [Cl-] = 2.9M. Using any data in Appendixes C and D, calculate the cell potential after addition of (a) 5.0 mL, (b) 10.0mL, (c) 19.0 mL, and (d) 21.0 mL of the KMnO4 solution.
433
views