Consider the reaction H2(g) + I2(g) → 2 HI(g). The reaction of a fixed amount of H2 and I2 is studied in a cylinder fitted with a movable piston. Indicate the effect of each of the following changes on the rate of the reaction. (a) An increase in temperature at constant volume
Consider the following concentration–time data for the reaction of iodide ion and hypochlorite ion (OCl-). The products are chloride ion and hypoiodite ion (OI-).
(a) Write a balanced equation for the reaction.
Verified Solution
Key Concepts
Balancing Chemical Equations
Ionic Compounds and Reactions
Reaction Products
Consider the reaction H2(g) + I2(g) → 2 HI(g). The reaction of a fixed amount of H2 and I2 is studied in a cylinder fitted with a movable piston. Indicate the effect of each of the following changes on the rate of the reaction. (c) The addition of a catalyst
Consider the following concentration–time data for the reaction of iodide ion and hypochlorite ion (OCl-). The products are chloride ion and hypoiodite ion (OI-).
(b) Determine the rate law, and calculate the value of the rate constant.
Consider the following concentration–time data for the reaction of iodide ion and hypochlorite ion (OCl-). The products are chloride ion and hypoiodite ion (OI-).
(d) Propose a mechanism that is consistent with the rate law, and express the rate constant in terms of the rate constants for the elementary steps in your mechanism. (Hint: Transfer of an H+ ion between H2O and OCl- is a rapid reversible reaction.)
Consider the reversible, first-order interconversion of two molecules A and B: where kf = 3.0⨉10-3 s-1 is the rate constant for the forward reaction and kr = 1.0⨉10-3 s-1 is the rate constant for the reverse reaction. We'll see in Chapter 15 that a reaction does not go to completion but instead reaches a state of equilibrium with comparable concentrations of reactants and products if the rate constants kf and kr have comparable values.
(a) What are the rate laws for the forward and reverse reactions?