The energy from radiation can be used to cause the rupture of chemical bonds. A minimum energy of 242 kJ/mol is required to break the chlorine–chlorine bond in Cl2. What is the longest wavelength of radiation that possesses the necessary energy to break the bond? What type of electromagnetic radiation is this?
Molybdenum metal must absorb radiation with a minimum frequency of 1.09 * 1015 s - 1 before it can eject an electron from its surface via the photoelectric effect. (a) What is the minimum energy needed to eject an electron?


Verified Solution

Key Concepts
Photoelectric Effect
Energy-Frequency Relationship
Planck's Constant
A diode laser emits at a wavelength of 987 nm. (a) In what portion of the electromagnetic spectrum is this radiation found? (b) All of its output energy is absorbed in a detector that measures a total energy of 0.52 J over a period of 32 s. How many photons per second are being emitted by the laser?
A stellar object is emitting radiation at 3.55 mm. a. What type of electromagnetic spectrum is this radiation? b. If a detector is capturing 3.2×108 photons per second at this wavelength, what is the total energy of the photons detected in 1.0 hour?
Molybdenum metal must absorb radiation with a minimum frequency of 1.09 * 1015 s - 1 before it can eject an electron from its surface via the photoelectric effect. (b) What wavelength of radiation will provide a photon of this energy?
Molybdenum metal must absorb radiation with a minimum frequency of 1.09 * 1015 s - 1 before it can eject an electron from its surface via the photoelectric effect. (c) If molybdenum is irradiated with light of wavelength of 120 nm, what is the maximum possible kinetic energy of the emitted electrons?
Does the hydrogen atom 'expand' or 'contract' when an electron is excited from the n = 1 state to the n = 3 state?