Chapter 20, Problem 82b
In some applications nickel–cadmium batteries have been replaced by nickel–zinc batteries. The overall cell reaction for this relatively new battery is: 2 H2O1l2 + 2 NiO1OH21s2 + Zn1s2 ¡ 2 Ni1OH221s2 + Zn1OH221s2 (b)What is the anode half-reaction?
Video transcript
During the discharge of an alkaline battery, 4.50 g of Zn is consumed at the anode of the battery. (b) How many coulombs of electrical charge are transferred from Zn to MnO2?
Heart pacemakers are often powered by lithium–silver chromate 'button' batteries. The overall cell reaction is 2 Li1s2 + Ag2CrO41s2 ¡ Li2CrO41s2 + 2 Ag1s2 (a) Lithium metal is the reactant at one of the electrodes of the battery. Is it the anode or the cathode?
Heart pacemakers are often powered by lithium–silver chromate 'button' batteries. The overall cell reaction is 2 Li1s2 + Ag2CrO41s2 ¡ Li2CrO41s2 + 2 Ag1s2 (b) Choose the two half-reactions from Appendix E that most closely approximate the reactions that occur in the battery. What standard emf would be generated by a voltaic cell based on these half-reactions?
In some applications nickel–cadmium batteries have been replaced by nickel–zinc batteries. The overall cell reaction for this relatively new battery is: 2 H2O1l2 + 2 NiO1OH21s2 + Zn1s2 ¡ 2 Ni1OH221s2 + Zn1OH221s2 (d) Would you expect the specific energy density of a nickel–zinc battery to be higher or lower than that of a nickel–cadmium battery?
Li-ion batteries used in automobiles typically use a LiMn2O4 cathode in place of the LiCoO2 cathode found in most Li-ion batteries. (a) Calculate the mass percent lithium in each electrode material.
Li-ion batteries used in automobiles typically use a LiMn2O4 cathode in place of the LiCoO2 cathode found in most Li-ion batteries. (b) Which material has a higher percentage of lithium? Does this help to explain why batteries made with LiMn2O4 cathodes deliver less power on discharging?