Skip to main content
Ch.19 - Chemical Thermodynamics
Chapter 19, Problem 104b

The reaction SO2(g) + 2 H2S(g) ⇌ 3 S(s) + 2 H2O(g) is the basis of a suggested method for removal of SO2 from power-plant stack gases. The standard free energy of each substance is given in Appendix C. (b) In principle, is this reaction a feasible method of removing SO2?

Verified Solution

Video duration:
4m
This video solution was recommended by our tutors as helpful for the problem above.
Was this helpful?

Key Concepts

Here are the essential concepts you must grasp in order to answer the question correctly.

Gibbs Free Energy

Gibbs Free Energy (G) is a thermodynamic potential that measures the maximum reversible work obtainable from a thermodynamic system at constant temperature and pressure. A negative change in Gibbs Free Energy (ΔG) indicates that a reaction is spontaneous and can occur without external energy input. Understanding ΔG is crucial for assessing the feasibility of chemical reactions, such as the removal of SO₂ in this context.
Recommended video:
Guided course
01:51
Gibbs Free Energy of Reactions

Equilibrium Constant

The equilibrium constant (K) quantifies the ratio of the concentrations of products to reactants at equilibrium for a reversible reaction. It provides insight into the position of equilibrium and the extent to which a reaction proceeds. For the reaction in question, analyzing K can help determine whether the formation of products (S and H₂O) is favored over the reactants (SO₂ and H₂S), indicating the feasibility of SO₂ removal.
Recommended video:
Guided course
01:14
Equilibrium Constant K

Le Chatelier's Principle

Le Chatelier's Principle states that if a dynamic equilibrium is disturbed by changing the conditions, the system will adjust to counteract the change and restore a new equilibrium. This principle is essential for understanding how changes in concentration, pressure, or temperature can affect the reaction's direction and feasibility, particularly in the context of removing SO₂ from stack gases.
Recommended video:
Guided course
07:32
Le Chatelier's Principle
Related Practice
Textbook Question

The potassium-ion concentration in blood plasma is about 5.0⨉10-3 M, whereas the concentration in muscle-cell fluid is much greater (0.15 M ). The plasma and intracellular fluid are separated by the cell membrane, which we assume is permeable only to K+. (a) What is ΔG for the transfer of 1 mol of K+ from blood plasma to the cellular fluid at body temperature 37 °C? (b) What is the minimum amount of work that must be used to transfer this K+?

1097
views
1
rank
Textbook Question

At what temperatures is the following reaction, the reduction of magnetite by graphite to elemental iron, spontaneous? Fe3O4(s) + 2 C(s, graphite) → 2 CO2(g) + 3 Fe(s)

795
views
1
comments
Textbook Question

Consider the following equilibrium: N2O4(g) ⇌ 2 NO2(g) Thermodynamic data on these gases are given in Appendix C. You may assume that ΔH° and ΔS° do not vary with temperature. (a) At what temperature will an equilibrium mixture contain equal amounts of the two gases?

1161
views
1
rank
Textbook Question

The reaction SO2(g) + 2 H2S(g) ⇌ 3 S(s) + 2 H2O(g) is the basis of a suggested method for removal of SO2 from power-plant stack gases. The standard free energy of each substance is given in Appendix C. (c) If PSO2 = PH2S and the vapor pressure of water is 25 torr, calculate the equilibrium SO2 pressure in the system at 298 K.

488
views
Textbook Question

The reaction SO2(g) + 2 H2S(g) ⇌ 3 S(s) + 2 H2O(g) is the basis of a suggested method for removal of SO2 from power-plant stack gases. The standard free energy of each substance is given in Appendix C. (d) Would you expect the process to be more or less effective at higher temperatures?

339
views
Textbook Question

When most elastomeric polymers (e.g., a rubber band) are stretched, the molecules become more ordered, as illustrated here:

Suppose you stretch a rubber band. (a) Do you expect the entropy of the system to increase or decrease?

567
views