When 2.00 mol of SO2Cl2 is placed in a 2.00-L flask at 303 K, 56% of the SO2Cl2 decomposes to SO2 and Cl2: SO2Cl2(π) β SO2(π) + Cl2(π) (c) According to Le ChΓ’telier's principle, would the percent of SO2Cl2 that decomposes increase, decrease or stay the same if the mixture were transferred to a 15.00-L vessel?
Consider the hypothetical reaction A(π) β 2 B(π). A flask is charged with 0.75 atm of pure A, after which it is allowed to reach equilibrium at 0Β°C. At equilibrium, the partial pressure of A is 0.36 atm. (c) To maximize the yield of product B, would you make the reaction flask larger or smaller?


Verified Solution

Key Concepts
Le Chatelier's Principle
Equilibrium Constant (Kp)
Effect of Volume on Gas Equilibrium
A sample of nitrosyl bromide (NOBr) decomposes according to the equation 2 NOBr(π) β 2 NO(π) + Br2(π) An equilibrium mixture in a 5.00-L vessel at 100Β°C contains 3.22 g of NOBr, 2.46 g of NO, and 6.55 g of Br2. (b) What is the total pressure exerted by the mixture of gases?
A sample of nitrosyl bromide (NOBr) decomposes according to the equation 2 NOBr(π) β 2 NO(π) + Br2(π) An equilibrium mixture in a 5.00-L vessel at 100Β°C contains 3.22 g of NOBr, 2.46 g of NO, and 6.55 g of Br2. (c) What was the mass of the original sample of NOBr?
As shown in Table 15.2, the equilibrium constant for the reaction N2(π) + 3 H2(π) β 2 NH3(π) is πΎπ = 4.34Γ10β3 at 300Β°C. Pure NH3 is placed in a 1.00-L flask and allowed to reach equilibrium at this temperature. There are 1.05 g NH3 in the equilibrium mixture. (b) What was the initial mass of ammonia placed in the vessel?
For the equilibrium PH3BCl3(π ) β PH3(π) + BCl3(π) πΎπ = 0.052 at 60Β°C. (b) A closed 1.500-L vessel at 60Β°C is charged with 0.0500 g of BCl3(π); 3.00 g of solid PH3BCl3 is then added to the flask, and the system is allowed to equilibrate. What is the equilibrium concentration of PH3?
A 0.831-g sample of SO3 is placed in a 1.00-L container and heated to 1100 K. The SO3 decomposes to SO2 and O2: 2SO3(π) β 2 SO2(π) + O2(π) At equilibrium, the total pressure in the container is 1.300 atm. Find the values of πΎπ and πΎπ for this reaction at 1100 K.