Skip to main content
Ch.5 - Thermochemistry

Chapter 5, Problem 106a

A coffee-cup calorimeter of the type shown in Figure 5.18 contains 150.0 g of water at 25.1°C A 121.0-g block of copper metal is heated to 100.4°C by putting it in a beaker of boiling water. The specific heat of Cu(s) is 0.385 J/g-K The Cu is added to the calorimeter, and after a time the contents of the cup reach a constant temperature of 30.1°C. (a) Determine the amount of heat, in J, lost by the copper block.

Verified Solution
Video duration:
1m
This video solution was recommended by our tutors as helpful for the problem above.
808
views
Was this helpful?

Video transcript

everyone's here. We have one grand block of copper metal That's heated to 95°C. It was dropped in a coffee cup Kalorama containing g of water At 24.5°C. And the temperature inside the cup changed to 34.9°C after one hour. Never asked what is the heat released by the proper block? We have a specific heat of copper. We went through 85 Joel's program. Sound degrees Celsius. Recall that the amount of heat transferred. It was the mass of the solution. The specific heat of the solution times the temperature change. So cute is what we're looking for. The mask is one g. This is a big key capacity of copper is 0. jobs. Our graham toms Greece Celsius and the temperature change Gonna be 34.9 three Celsius minus 95 degrees Celsius. We get negative 60.1 Celsius plug in the values to find the heat released by the copper block. Gonna get cute because one graham I'm 0.385 goals program, times degrees Celsius. I was gonna get a 60.1 three Celsius. Ever cute. Gonna get negative 23.1 jaws and negative means that the heat is lost. Thanks for watching my video and I hope it was helpful
Related Practice
Textbook Question

Consider a system consisting of the following apparatus, in which gas is confined in one flask and there is a vacuum in the other flask. The flasks are separated by a valve. Assume that the flasks are perfectly insulated and will not allow the flow of heat into or out of the flasks to the surroundings. When the valve is opened, gas flows from the filled flask to the evacuated one. (a) Is work performed during the expansion of the gas? (b) Why or why not?

466
views
Textbook Question

A sample of gas is contained in a cylinder-and-piston arrangement. There is an external pressure of 100 kPa. The gas undergoes the change in state shown in the drawing. (b) Now assume that the cylinder and piston are made up of a thermal conductor such as a metal. During the state change, the cylinder gets colder to the touch. What is the sign of q for the state change in this case? Describe the difference in the state of the system at the end of the process in the two cases. What can you say about the relative values of E?

563
views
Textbook Question

A house is designed to have passive solar energy features. Brickwork incorporated into the interior of the house acts as a heat absorber. Each brick weighs approximately 1.8 kg. The specific heat of the brick is 0.85 J/g•K. How many bricks must be incorporated into the interior of the house to provide the same total heat capacity as 1.7⨉103 gal of water?

1818
views
Textbook Question

A coffee-cup calorimeter of the type shown in Figure 5.18 contains 150.0 g of water at 25.1°C A 121.0-g block of copper metal is heated to 100.4°C by putting it in a beaker of boiling water. The specific heat of Cu(s) is 0.385 J/g-K The Cu is added to the calorimeter, and after a time the contents of the cup reach a constant temperature of 30.1°C (b) Determine the amount of heat gained by the water. The specific heat of water is 4.184 J/1gK.

649
views
Textbook Question

A coffee-cup calorimeter of the type shown in Figure 5.18 contains 150.0 g of water at 25.1°C A 121.0-g block of copper metal is heated to 100.4°C by putting it in a beaker of boiling water. The specific heat of Cu(s) is 0.385 J/g-K The Cu is added to the calorimeter, and after a time the contents of the cup reach a constant temperature of 30.1°C (d) What would be the final temperature of the system if all the heat lost by the copper block were absorbed by the water in the calorimeter?

1200
views
1
comments
Textbook Question

(b) Assuming that there is an uncertainty of 0.002 °C in each temperature reading and that the masses of samples are measured to 0.001 g, what is the estimated uncertainty in the value calculated for the heat of combustion per mole of caffeine?

911
views
1
rank