Skip to main content
Ch.4 - Reactions in Aqueous Solution
Chapter 4, Problem 103

(c) If 18.65 mL of the caesium hydroxide solution was needed to neutralize a 42.3 mL aliquot of the hydroiodic acid solution, what is the concentration (molarity) of the acid?

Verified Solution

Video duration:
2m
This video solution was recommended by our tutors as helpful for the problem above.
Was this helpful?

Key Concepts

Here are the essential concepts you must grasp in order to answer the question correctly.

Neutralization Reaction

A neutralization reaction occurs when an acid reacts with a base to produce water and a salt. In this case, hydroiodic acid (HI) reacts with caesium hydroxide (CsOH). The stoichiometry of the reaction is crucial for determining the relationship between the volumes and concentrations of the reactants.
Recommended video:
Guided course
05:56
Lewis Dot Structures: Neutral Compounds

Molarity

Molarity is a measure of concentration defined as the number of moles of solute per liter of solution. It is expressed in moles per liter (mol/L). To find the molarity of the hydroiodic acid, one must calculate the moles of caesium hydroxide used and relate it to the volume of the acid solution.
Recommended video:

Stoichiometry

Stoichiometry involves the calculation of reactants and products in chemical reactions based on balanced equations. It allows us to determine the amount of acid neutralized by the base. In this scenario, knowing the balanced equation helps in finding the molarity of the acid from the volume and concentration of the base used.
Recommended video:
Guided course
01:16
Stoichiometry Concept
Related Practice
Textbook Question

Hard water contains Ca2+, Mg2+, and Fe2+, which interfere with the action of soap and leave an insoluble coating on the insides of containers and pipes when heated. Water softeners replace these ions with Na+. Keep in mind that charge balance must be maintained. (b) If the sodium is added to the water softener in the form of NaCl, how many grams of sodium chloride are needed?

842
views
Textbook Question

Citric acid, C6H8O7, is a triprotic acid. It occurs naturally in citrus fruits like lemons and has applications in food flavouring and preservatives. A solution containing an unknown concentration of the acid is titrated with KOH. It requires 23.20 mL of 0.500 M KOH solution to titrate all three acidic protons in 100.00 mL of the citric acid solution. Write a balanced net ionic equation for the neutralization reaction.

759
views
Textbook Question

Citric acid, C6H8O7, is a triprotic acid. It occurs naturally in citrus fruits like lemons and has applications in food flavouring and preservatives. A solution containing an unknown concentration of the acid is titrated with KOH. It requires 23.20 mL of 0.500 M KOH solution to titrate all three acidic protons in 100.00 mL of the citric acid solution. Calculate the molarity of the citric acid solution.

2019
views
Textbook Question

Suppose you have 3.00 g of powdered zinc metal, 3.00g of powdered silver metal and 500.0 mL of a 0.2 M copper(II) nitrate solution. (a) Which metal will react with the copper(II) nitrate solution?

330
views
Textbook Question

Suppose you have 3.00 g of powdered zinc metal, 3.00g of powdered silver metal and 500.0 mL of a 0.2 M copper(II) nitrate solution. (d) What is the molarity of Cu2+ ions in the resulting solution?

352
views
Textbook Question

(a) By titration, 15.0 mL of 0.1008 M sodium hydroxide is needed to neutralize a 0.2053-g sample of a weak acid. What is the molar mass of the acid if it is monoprotic?

1329
views