Skip to main content
Ch.3 - Chemical Reactions and Reaction Stoichiometry
Chapter 3, Problem 105c3

When a mixture of 10.0 g of acetylene 1C2H22 and 10.0 g of oxygen 1O22 is ignited, the resulting combustion reaction produces CO2 and H2O. (c) How many grams of CO2 are present after the reaction is complete?

Verified Solution

Video duration:
5m
This video solution was recommended by our tutors as helpful for the problem above.
Was this helpful?

Key Concepts

Here are the essential concepts you must grasp in order to answer the question correctly.

Stoichiometry

Stoichiometry is the branch of chemistry that deals with the quantitative relationships between the reactants and products in a chemical reaction. It allows us to calculate the amounts of substances consumed and produced in a reaction based on balanced chemical equations. In this case, understanding the stoichiometric ratios of acetylene and oxygen will help determine how much carbon dioxide is produced.
Recommended video:
Guided course
01:16
Stoichiometry Concept

Combustion Reactions

Combustion reactions are exothermic reactions that occur when a substance reacts with oxygen, producing heat and light. In the case of acetylene (C2H2), it combusts in the presence of oxygen to form carbon dioxide (CO2) and water (H2O). Recognizing the products of the combustion of acetylene is essential for calculating the mass of CO2 produced.
Recommended video:
Guided course
02:24
Combustion Apparatus

Molar Mass

Molar mass is the mass of one mole of a substance, typically expressed in grams per mole (g/mol). It is crucial for converting between grams of a substance and moles, which are used in stoichiometric calculations. For this problem, knowing the molar masses of acetylene, oxygen, carbon dioxide, and water will facilitate the conversion of the initial masses into moles, allowing for the determination of the final mass of CO2 produced.
Recommended video:
Guided course
02:11
Molar Mass Concept